Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalog Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
If you have chosen panel analytes and then choose a premix or single plex kit, you will lose that customization.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalog Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalog Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalog Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Attention: We have moved. EMD Millipore products are no longer available for purchase on emdmillipore.com.Learn More
For liquid filtration, a membrane must be wettable with the fluid being filtered. The wettability of a membrane is tied to the chemical properties of the membrane surface. Most polymers used to manufacture microporous membranes are naturally hydrophobic, meaning they will not wet out with water.
Some exceptions are nylon and cellulose which are naturally hydrophilic and will wet out with water. The distinction between hydrophobic and hydrophilic relates to the surface energy of the polymer. If the surface energy is >70 dynes/cm, the polymer is hydrophilic. Below 70 dynes/cm, the polymer is hydrophobic.
Hydrophobic membranes are wettable with alcohols. If the polymer is compatible with alcohols, it can be wet first with the alcohol and then equilibrated in water prior to filtering the aqueous fluid. For many applications, this is impractical; the membrane must be directly wettable with the aqueous fluid.
Overcoming Hydrophobicity
To overcome the hydrophobicity of the polymer, the membrane can be treated with a secondary chemistry that coats the base polymer. The secondary chemistry becomes primary in determining wettability. It is important to recognize that the base polymer remains hydrophobic unless the secondary chemistry is a covalent modification of the polymer.
Membrane Coatings to Change Wettability
Hydrophilic membranes wet spontaneously with pure water (at a surface tension approximately 72 dynes/cm2 at ambient conditions) and require some elevated pressure to allow intrusion of water into the pores of the structure. Reduction of surface tension of the wetting fluid either through addition of solutes, such as surfactants or low surface tension miscible solvents such as alcohol to water, will have an impact on how quickly dry membranes will wet.
In addition, solvents or solvent mixtures which possess a relatively low surface tension will wet hydrophobic membranes spontaneously.
For instance, the 0.2 µm PTFE Fluoropore® membrane requires an intrusion pressure of approximately 50 psig to affect wetting with pure water. However, organic solvents with a surface tension of less than approximately 32 dynes/cm2 will spontaneously wet Fluoropore membranes at 0 psig pressure. There are situations when chemical compatibility requires that a hydrophobic filter be used for a solution that will not wet the filter. In such instances, the filter needs to be pre-wet with an alcohol (i.e. ethanol, methanol). Then the filter should be rinsed, if necessary.
Venting
In venting applications, the filter is used as a porous barrier that allows escape of gas bubbles from a liquid stream or exchange of gases between a liquid stream and the external atmosphere. To ensure that the filter does not wet out under any circumstances, it can be treated with a secondary chemistry that renders it superhydrophobic or oleophobic. This reduces the surface energy to <20 dynes/cm. The membrane cannot be wet with water or alcohols.