Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease. Simões, Ana T, et al. Brain, 135: 2428-39 (2012)
2012
Show Abstract
Machado-Joseph disease is the most frequently found dominantly-inherited cerebellar ataxia. Over-repetition of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within the ataxin 3 protein, which upon proteolysis may trigger Machado-Joseph disease. We investigated the role of calpains in the generation of toxic ataxin 3 fragments and pathogenesis of Machado-Joseph disease. For this purpose, we inhibited calpain activity in mouse models of Machado-Joseph disease by overexpressing the endogenous calpain-inhibitor calpastatin. Calpain blockage reduced the size and number of mutant ataxin 3 inclusions, neuronal dysfunction and neurodegeneration. By reducing fragmentation of ataxin 3, calpastatin overexpression modified the subcellular localization of mutant ataxin 3 restraining the protein in the cytoplasm, reducing aggregation and nuclear toxicity and overcoming calpastatin depletion observed upon mutant ataxin 3 expression. Our findings are the first in vivo proof that mutant ataxin 3 proteolysis by calpains mediates its translocation to the nucleus, aggregation and toxicity and that inhibition of calpains may provide an effective therapy for Machado-Joseph disease. | 22843411
|
Downregulation of the cAMPPKA pathway in PC12 cells overexpressing NCS-1. Souza BR, Torres KC, Miranda DM, Motta BS, Caetano FS, Rosa DV, Souza RP, Giovani A Jr, Carneiro DS, Guimarães MM, Martins-Silva C, Reis HJ, Gomez MV, Jeromin A, Romano-Silva MA Cellular and molecular neurobiology
31
135-43. Epub 2010 Sep 14.
2011
Show Abstract
It is well known that dopamine imbalances are associated with many psychiatric disorders and that the dopaminergic receptor D₂ is the main target of antipsychotics. Recently it was shown that levels of two proteins implicated in dopaminergic signaling, Neuronal calcium sensor-1 (NCS-1) and DARPP-32, are altered in the prefrontal cortex (PFC) of both schizophrenic and bipolar disorder patients. NCS-1, which inhibits D₂ internalization, is upregulated in the PFC of both patients. DARPP-32, which is a downstream effector of dopamine signaling, integrates the pathways of several neurotransmitters and is downregulated in the PFC of both patients. Here, we used PC12 cells stably overexpressing NCS-1 (PC12-NCS-1 cells) to address the function of this protein in DARPP-32 signaling pathway in vitro. PC12-NCS-1 cells displayed downregulation of the cAMP/PKA pathway, with decreased levels of cAMP and phosphorylation of CREB at Ser133. We also observed decreased levels of total and phosphorylated DARPP-32 at Thr34. However, these cells did not show alterations in the levels of D₂ and phosphorylation of DARPP-32 at Thr75. These results indicate that NCS-1 modulates PKA/cAMP signaling pathway. Identification of the cellular mechanisms linking NCS-1 and DARPP-32 may help in the understanding the signaling machinery with potential to be turned into targets for the treatment of schizophrenia and other debilitating psychiatric disorders. | 20838877
|