Leucine-rich repeat kinase 2 associates with lipid rafts. Hatano, T; Kubo, S; Imai, S; Maeda, M; Ishikawa, K; Mizuno, Y; Hattori, N Human molecular genetics
16
678-90
2007
Show Abstract
Leucine-Rich Repeat Kinase 2 (LRRK2) is a causative gene for the autosomal dominant form of Parkinson's disease (PD). The gene encodes the approximately 280 kDa LRRK2 protein composed of domains such as leucine-rich repeats, Ras in complex proteins (Roc) followed by C-terminal of Roc (COR), mitogen-activated protein kinase kinase kinase (MAPKKK) and WD40. However, the normal function of the protein as well as its contribution to the pathogenesis of PD remains largely unknown. Here we describe the localization of LRRK2 in Golgi apparatus, plasma membrane and synaptic vesicles in cultured cells including mouse primary neurons. The membrane association of LRRK2 resists solubilization by ice-cold 1% Triton X-100, indicating its association through lipid rafts. To investigate whether mutations found in PD patients affect the localization of LRRK2, we transfected various LRRK2 mutants into cultured cells and performed fractionation experiments. Unexpectedly, the mutants are collected in both membrane and soluble fractions in a manner similar to wild type (WT). I2020T mutant LRRK2 associates with lipid rafts, similar to the WT. The lipid raft association of LRRK2 mutants as well as WT LRRK2 suggests that alteration of LRRK2 function on lipid rafts contributes to the pathogenesis of PD. | 17341485
|
Dynamic and redundant regulation of LRRK2 and LRRK1 expression. Biskup, S; Moore, DJ; Rea, A; Lorenz-Deperieux, B; Coombes, CE; Dawson, VL; Dawson, TM; West, AB BMC neuroscience
8
102
2007
Show Abstract
Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene account for a significant proportion of autosomal-dominant and some late-onset sporadic Parkinson's disease. Elucidation of LRRK2 protein function in health and disease provides an opportunity for deciphering molecular pathways important in neurodegeneration. In mammals, LRRK1 and LRRK2 protein comprise a unique family encoding a GTPase domain that controls intrinsic kinase activity. The expression profiles of the murine LRRK proteins have not been fully described and insufficiently characterized antibodies have produced conflicting results in the literature.Herein, we comprehensively evaluate twenty-one commercially available antibodies to the LRRK2 protein using mouse LRRK2 and human LRRK2 expression vectors, wild-type and LRRK2-null mouse brain lysates and human brain lysates. Eleven antibodies detect over-expressed human LRRK2 while four antibodies detect endogenous human LRRK2. In contrast, two antibodies recognize over-expressed mouse LRRK2 and one antibody detected endogenous mouse LRRK2. LRRK2 protein resides in both soluble and detergent soluble protein fractions. LRRK2 and the related LRRK1 genes encode low levels of expressed mRNA species corresponding to low levels of protein both during development and in adulthood with largely redundant expression profiles.Despite previously published results, commercially available antibodies generally fail to recognize endogenous mouse LRRK2 protein; however, several antibodies retain the ability to detect over-expressed mouse LRRK2 protein. Over half of the commercially available antibodies tested detect over-expressed human LRRK2 protein and some have sufficient specificity to detect endogenous LRRK2 in human brain. The mammalian LRRK proteins are developmentally regulated in several tissues and coordinated expression suggest possible redundancy in the function between LRRK1 and LRRK2. | 18045479
|