Potassium channel Kv1.3 is highly expressed by microglia in human Alzheimer's disease. Rangaraju, S; Gearing, M; Jin, LW; Levey, A Journal of Alzheimer's disease : JAD
44
797-808
2015
Show Abstract
Recent genetic studies suggest a central role for innate immunity in Alzheimer's disease (AD) pathogenesis, wherein microglia orchestrate neuroinflammation. Kv1.3, a voltage-gated potassium channel of therapeutic relevance in autoimmunity, is upregulated by activated microglia and mediates amyloid-mediated microglial priming and reactive oxygen species production in vitro. We hypothesized that Kv1.3 channel expression is increased in human AD brain tissue. In a blinded postmortem immunohistochemical semi-quantitative analysis performed on ten AD patients and ten non-disease controls, we observed a significantly higher Kv1.3 staining intensity (p = 0.03) and Kv1.3-positive cell density (p = 0.03) in the frontal cortex of AD brains, compared to controls. This paralleled an increased number of Iba1-positive microglia in AD brains. Kv1.3-positive cells had microglial morphology and were associated with amyloid-β plaques. In immunofluorescence studies, Kv1.3 channels co-localized primarily with Iba1 but not with astrocyte marker GFAP, confirming that elevated Kv1.3 expression is limited to microglia. Higher Kv1.3 expression in AD brains was also confirmed by western blot analysis. Our findings support that Kv1.3 channels are biologically relevant and microglia-specific targets in human AD. | | 25362031
|
The GAP portion of Pseudomonas aeruginosa type III secreted toxin ExoS upregulates total and surface levels of wild type CFTR. Tukaye, DN; Kwon, SH; Guggino, WB Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
31
153-65
2013
Show Abstract
Pseudomonas aeruginosa (PA) infections account for a large percentage of fatal hospital acquired pneumonias. One of the PA Type III secreted toxin (TTST) ExoS, a bifunctional protein with N-terminal GTPase activating protein (GAP) and C-terminal ADP rybosyl transferase (ADPRT) activities, significantly contributes to PA virulence by targeting small molecular weight G-proteins (SMWGP). In this study, we have looked at one of the mechanisms by which the GAP portion of ExoS (ExoS-GAP) mediates cellular toxicity.The effects of ExoS-GAP on CFTR trafficking were studied in CFBE41o- Kir 2.2 and MDCK cell lines stably expressing CFTR using a transient transfection system.Transient transfection of ExoS-GAP increased the total and surface protein levels of mature wild type CFTR in epithelial cells stably expressing wild type (WT) CFTR. The effect of ExoS-GAP was specific to CFTR in bronchial epithelial cells since it did not affect the total protein levels of Na(+)/K(+)ATPase, another membrane protein. A point mutation in the ExoS GAP domain (R146K), known to disrupt its catalytic GAP activity, abolished the effect of ExoS-GAP on WT CFTR. Lysosomal inhibition studies with Bafilomycin A1 indicate that ExoS-GAP decreased lysosomal degradation of the mature WT CFTR with concomitant increase in the total levels of mature WT CFTR. However, ExoS-GAP did not increase the total protein levels of ∆F508CFTR.The GAP portion of the PA TTST ExoS increases the total and surface levels of wild type CFTR in vitro mammalian cell system. The effect of ExoS-GAP on WT CFTR total protein levels provides new insight into understanding the virulent pathophysiology of PA infections. | | 23428533
|
The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. Fowler, SL; Akins, M; Zhou, H; Figeys, D; Bennett, SA Journal of proteome research
12
2597-610
2013
Show Abstract
Connexins are the structural subunits of gap junctions and act as protein platforms for signaling complexes. Little is known about tissue-specific connexin signaling nexuses, given significant challenges associated with affinity-purifying endogenous channel complexes to the level required for interaction analyses. Here, we used multiple subcellular fractionation techniques to isolate connexin32-enriched membrane microdomains from murine liver. We show, for the first time, that connexin32 localizes to both the plasma membrane and inner mitochondrial membrane of hepatocytes. Using a combination of immunoprecipitation-high throughput mass spectrometry, reciprocal co-IP, and subcellular fractionation methodologies, we report a novel interactome validated using null mutant controls. Eighteen connexin32 interacting proteins were identified. The majority represent resident mitochondrial proteins, a minority represent plasma membrane, endoplasmic reticulum, or cytoplasmic partners. In particular, connexin32 interacts with connexin26 and the mitochondrial protein, sideroflexin-1, at the plasma membrane. Connexin32 interaction enhances connexin26 stability. Converging bioinformatic, biochemical, and confocal analyses support a role for connexin32 in transiently tethering mitochondria to connexin32-enriched plasma membrane microdomains through interaction with proteins in the outer mitochondrial membrane, including sideroflexin-1. Complex formation increases the pool of sideroflexin-1 that is present at the plasma membrane. Together, these data identify a novel plasma membrane/mitochondrial signaling nexus in the connexin32 interactome. | | 23590695
|
SORLA-dependent and -independent functions for PACS1 in control of amyloidogenic processes. Burgert, T; Schmidt, V; Caglayan, S; Lin, F; Füchtbauer, A; Füchtbauer, EM; Nykjaer, A; Carlo, AS; Willnow, TE Molecular and cellular biology
33
4308-20
2013
Show Abstract
Sorting-related receptor with A-type repeats (SORLA) is a sorting receptor for the amyloid precursor protein (APP) that prevents breakdown of APP into Aβ peptides, a hallmark of Alzheimer's disease (AD). Several cytosolic adaptors have been shown to interact with the cytoplasmic domain of SORLA, thereby controlling intracellular routing of SORLA/APP complexes in cell lines. However, the relevance of adaptor-mediated sorting of SORLA for amyloidogenic processes in vivo remained unexplored. We focused on the interaction of SORLA with phosphofurin acidic cluster sorting protein 1 (PACS1), an adaptor that shuttles proteins between the trans-Golgi network (TGN) and endosomes. By studying PACS1 knockdown in neuronal cell lines and investigating transgenic mice expressing a PACS1-binding-defective mutant form of SORLA, we found that disruption of SORLA and PACS1 interaction results in the inability of SORLA/APP complexes to sort to the TGN in neurons and in increased APP processing in the brain. Loss of PACS1 also impairs the proper expression of the cation-independent mannose 6-phosphate receptor and its target cathepsin B, a protease that breaks down Aβ. Thus, our data identified the importance of PACS1-dependent protein sorting for amyloidogenic-burden control via both SORLA-dependent and SORLA-independent mechanisms. | | 24001769
|
Na,K-ATPase alpha isoforms at the blood-cerebrospinal fluid-trigeminal nerve and blood-retina interfaces in the rat. Arakaki, X; McCleary, P; Techy, M; Chiang, J; Kuo, L; Fonteh, AN; Armstrong, B; Levy, D; Harrington, MG Fluids and barriers of the CNS
10
14
2013
Show Abstract
Cerebrospinal fluid (CSF) sodium concentration increases during migraine attacks, and both CSF and vitreous humor sodium increase in the rat migraine model. The Na,K-ATPase is a probable source of these sodium fluxes. Since Na,K-ATPase isoforms have different locations and physiological roles, our objective was to establish which alpha isoforms are present at sites where sodium homeostasis is disrupted.Specific Na,K-ATPase alpha isoforms were identified in rat tissues by immunohistochemistry at the blood-CSF barrier at the choroid plexus, at the blood-CSF-trigeminal barrier at the meninges, at the blood-retina barrier, and at the blood-aqueous barrier at the ciliary body. Calcitonin gene-related peptide (CGRP), occludin, or von Willibrand factor (vWF) were co-localized with Na,K-ATPase to identify trigeminal nociceptor fibers, tight junctions, and capillary endothelial cells respectively.The Na,K-ATPase alpha-2 isoform is located on capillaries and intensely at nociceptive trigeminal nerve fibers at the meningeal blood-CSF-trigeminal barrier. Alpha-1 and -3 are lightly expressed on the trigeminal nerve fibers but not at capillaries. Alpha-2 is expressed at the blood-retina barriers and, with alpha-1, at the ciliary body blood aqueous barrier. Intense apical membrane alpha-1 was associated with moderate cytoplasmic alpha-2 expression at the choroid plexus blood-CSF barrier.Na,K-ATPase alpha isoforms are present at the meningeal, choroid plexus, and retinal barriers. Alpha-2 predominates at the capillary endothelial cells in the meninges and retinal ganglion cell layer. | | 23497725
|
Attenuation of lithium-induced natriuresis and kaliuresis in P2Y₂ receptor knockout mice. Zhang, Y; Li, L; Kohan, DE; Ecelbarger, CM; Kishore, BK American journal of physiology. Renal physiology
305
F407-16
2013
Show Abstract
Whole body knockout (KO) of the P2Y₂ receptor (P2Y₂R) results in enhanced vasopressin V2 receptor activity and increased renal Na⁺ conservation. We hypothesized that P2Y₂R KO mice would be less sensitive to lithium-induced natriuresis and kaliuresis due to attenuated downregulation of one or more of the major renal Na⁺ or K⁺ transporter/channel proteins. KO and wild-type (WT) mice were fed a control or lithium-added diet (40 mmol/kg food) for 14 days. Lithium-induced natriuresis and kaliuresis were significantly (~25%) attenuated in KO mice. The subunits of the epithelial Na⁺ channel (ENaC) were variably affected by lithium and genotype, but, overall, medullary levels were decreased substantially by lithium (15-60%) in both genotypes. In contrast, cortical, β-, and γ-ENaC were increased by lithium (~50%), but only in WT mice. Moreover, an assessment of ENaC activity by benzamil sensitivity suggested that lithium increased ENaC activity in WT mice but in not KO mice. In contrast, medullary levels of Na⁺-K⁺-2Cl⁻ cotransporter 2 and cortical levels of the renal outer medullary K⁺ channel were not downregulated by lithium and were significantly (15-76%) higher in KO mice under both dietary conditions. In addition, under control conditions, tissue osmolality of the inner medulla as well as furosemide sensitivity were significantly higher in KO mice versus WT mice. Therefore, we suggest that increased expression of these proteins, particularly in the control state, reduces Na⁺ delivery to the distal nephron and provides a buffer to attenuate collecting duct-mediated natriuresis and kaliuresis. Additional studies are warranted to explore the potential therapeutic benefits of purinergic antagonism. | | 23739592
|
CD36 and Na/K-ATPase-α1 Form a Proinflammatory Signaling Loop in Kidney. Kennedy, David J, et al. Hypertension, 61: 216-24 (2013)
2013
Show Abstract
Proatherogenic, hyperlipidemic states demonstrate increases in circulating ligands for scavenger receptor CD36 (eg, oxidized low-density lipoprotein [oxLDL]) and the Na/K-ATPase (eg, cardiotonic steroids). These factors increase inflammation, oxidative stress, and progression of chronic kidney disease. We hypothesized that diet-induced obesity and hyperlipidemia potentiate a CD36/Na/K-ATPase-dependent inflammatory paracrine loop between proximal tubule cells (PTCs) and their associated macrophages and thereby facilitate development of chronic inflammation and tubulointerstitial fibrosis. ApoE(-/-) and apoE(-/-)/cd36(-/-) mice were fed a high-fat diet for ≤32 weeks and examined for physiologic and histologic changes in renal function. Compared with apoE(-/-), apoE(-/-)/cd36(-/-) mice had improved creatinine clearance and blood pressure which corresponded histologically with less glomerular and tubulointerstitial macrophage accumulation, foam cell formation, oxidant stress, and interstitial fibrosis. Coimmunopreciptation and a cell surface fluorescence-based crosslinking assay showed that CD36 and Na/K-ATPase α-1 colocalized in PTCs and macrophages, and this association was increased by oxLDL or the cardiotonic steroid ouabain. OxLDL and ouabain also increased activation of Src and Lyn in PTCs. Cell-free conditioned medium from PTCs treated with oxLDL or ouabain increased macrophage migration. OxLDL, ouabain, or plasma isolated from high-fat diet-fed mice stimulated reactive oxygen species production in PTCs, which was inhibited by N-acetyl-cysteine, apocynin, or Na/K-ATPase α-1 knockdown. These data suggest that ligands generated in hyperlipidemic states activate CD36 and the Na/K-ATPase and potentiate an inflammatory signaling loop involving PTCs and their associated macrophages, which facilitates the development of chronic inflammation, oxidant stress, and fibrosis underlying the renal dysfunction common to proatherogenic, hyperlipidemic states. | | 23172921
|
Sortilin-related receptor SORCS3 is a postsynaptic modulator of synaptic depression and fear extinction. Breiderhoff, T; Christiansen, GB; Pallesen, LT; Vaegter, C; Nykjaer, A; Holm, MM; Glerup, S; Willnow, TE PloS one
8
e75006
2013
Show Abstract
SORCS3 is an orphan receptor of the VPS10P domain receptor family, a group of sorting and signaling receptors central to many pathways in control of neuronal viability and function. SORCS3 is highly expressed in the CA1 region of the hippocampus, but the relevance of this receptor for hippocampal activity remained absolutely unclear. Here, we show that SORCS3 localizes to the postsynaptic density and that loss of receptor activity in gene-targeted mice abrogates NMDA receptor-dependent and -independent forms of long-term depression (LTD). Consistent with a loss of synaptic retraction, SORCS3-deficient mice suffer from deficits in behavioral activities associated with hippocampal LTD, particularly from an accelerated extinction of fear memory. A possible molecular mechanism for SORCS3 in synaptic depression was suggested by targeted proteomics approaches that identified the ability of SORCS3 to functionally interact with PICK1, an adaptor that sorts glutamate receptors at the postsynapse. Faulty localization of PICK1 in SORCS3-deficient neurons argues for altered glutamate receptor trafficking as the cause of altered synaptic plasticity in the SORCS3-deficient mouse model. In conclusion, our studies have identified a novel function for VPS10P domain receptors in control of synaptic depression and suggest SORCS3 as a novel factor modulating aversive memory extinction. | | 24069373
|
Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. Yamazaki, D; Funato, Y; Miura, J; Sato, S; Toyosawa, S; Furutani, K; Kurachi, Y; Omori, Y; Furukawa, T; Tsuda, T; Kuwabata, S; Mizukami, S; Kikuchi, K; Miki, H PLoS genetics
9
e1003983
2013
Show Abstract
Transcellular Mg(2+) transport across epithelia, involving both apical entry and basolateral extrusion, is essential for magnesium homeostasis, but molecules involved in basolateral extrusion have not yet been identified. Here, we show that CNNM4 is the basolaterally located Mg(2+) extrusion molecule. CNNM4 is strongly expressed in intestinal epithelia and localizes to their basolateral membrane. CNNM4-knockout mice showed hypomagnesemia due to the intestinal malabsorption of magnesium, suggesting its role in Mg(2+) extrusion to the inner parts of body. Imaging analyses revealed that CNNM4 can extrude Mg(2+) by exchanging intracellular Mg(2+) with extracellular Na(+). Furthermore, CNNM4 mutations cause Jalili syndrome, characterized by recessive amelogenesis imperfecta with cone-rod dystrophy. CNNM4-knockout mice showed defective amelogenesis, and CNNM4 again localizes to the basolateral membrane of ameloblasts, the enamel-forming epithelial cells. Missense point mutations associated with the disease abolish the Mg(2+) extrusion activity. These results demonstrate the crucial importance of Mg(2+) extrusion by CNNM4 in organismal and topical regulation of magnesium. | | 24339795
|
Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1. Bouyer, PG; Tang, X; Weber, CR; Shen, L; Turner, JR; Matthews, JB American journal of physiology. Gastrointestinal and liver physiology
304
G142-56
2013
Show Abstract
Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-I(sc)). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-I(sc) by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-I(sc). Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca(2+)](i)) in T84 cells and AMG-9810 blocked the rise in [Ca(2+)](i) induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. | | 23139219
|