Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Goff, LA; Groff, AF; Sauvageau, M; Trayes-Gibson, Z; Sanchez-Gomez, DB; Morse, M; Martin, RD; Elcavage, LE; Liapis, SC; Gonzalez-Celeiro, M; Plana, O; Li, E; Gerhardinger, C; Tomassy, GS; Arlotta, P; Rinn, JL Proceedings of the National Academy of Sciences of the United States of America
112
6855-62
2015
Show Abstract
Long noncoding RNAs (lncRNAs) have been implicated in numerous cellular processes including brain development. However, the in vivo expression dynamics and molecular pathways regulated by these loci are not well understood. Here, we leveraged a cohort of 13 lncRNAnull mutant mouse models to investigate the spatiotemporal expression of lncRNAs in the developing and adult brain and the transcriptome alterations resulting from the loss of these lncRNA loci. We show that several lncRNAs are differentially expressed both in time and space, with some presenting highly restricted expression in only selected brain regions. We further demonstrate altered regulation of genes for a large variety of cellular pathways and processes upon deletion of the lncRNA loci. Finally, we found that 4 of the 13 lncRNAs significantly affect the expression of several neighboring proteincoding genes in a cis-like manner. By providing insight into the endogenous expression patterns and the transcriptional perturbations caused by deletion of the lncRNA locus in the developing and postnatal mammalian brain, these data provide a resource to facilitate future examination of the specific functional relevance of these genes in neural development, brain function, and disease. | | | 26034286
|
Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. Pappas, SS; Darr, K; Holley, SM; Cepeda, C; Mabrouk, OS; Wong, JM; LeWitt, TM; Paudel, R; Houlden, H; Kennedy, RT; Levine, MS; Dauer, WT eLife
4
e08352
2015
Show Abstract
Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. | | | 26052670
|
Highly efficient direct conversion of human fibroblasts to neuronal cells by chemical compounds. Dai, P; Harada, Y; Takamatsu, T Journal of clinical biochemistry and nutrition
56
166-70
2015
Show Abstract
Direct conversion of mammalian fibroblasts into induced neuronal (iN) cells has been attained by forced expression of pro-neural transcriptional factors, or by combining defined factors with either microRNAs or small molecules. Here, we show that neuronal cells can be converted from postnatal human fibroblasts into cell populations with neuronal purities of up to greater than 80% using a combination of six chemical compounds. The chemical compound-induced neuronal cells (CiNCs) express neuron-specific proteins and functional neuron markers. The efficiency of CiNCs is unaffected by either the donor's age or cellular senescence (passage number). We propose this chemical direct converting strategy as a potential approach for highly efficient generation of neuronal cells from human fibroblasts for such uses as in neural disease modeling and regenerative medicine. | | | 26060345
|
shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson's disease model. Zharikov, AD; Cannon, JR; Tapias, V; Bai, Q; Horowitz, MP; Shah, V; El Ayadi, A; Hastings, TG; Greenamyre, JT; Burton, EA The Journal of clinical investigation
125
2721-35
2015
Show Abstract
Multiple convergent lines of evidence implicate both α-synuclein (encoded by SCNA) and mitochondrial dysfunction in the pathogenesis of sporadic Parkinson's disease (PD). Occupational exposure to the mitochondrial complex I inhibitor rotenone increases PD risk; rotenone-exposed rats show systemic mitochondrial defects but develop specific neuropathology, including α-synuclein aggregation and degeneration of substantia nigra dopaminergic neurons. Here, we inhibited expression of endogenous α-synuclein in the adult rat substantia nigra by adeno-associated virus-mediated delivery of a short hairpin RNA (shRNA) targeting the endogenous rat Snca transcript. Knockdown of α-synuclein by ~35% did not affect motor function or cause degeneration of nigral dopaminergic neurons in control rats. However, in rotenone-exposed rats, progressive motor deficits were substantially attenuated contralateral to α-synuclein knockdown. Correspondingly, rotenone-induced degeneration of nigral dopaminergic neurons, their dendrites, and their striatal terminals was decreased ipsilateral to α-synuclein knockdown. These data show that α-synuclein knockdown is neuroprotective in the rotenone model of PD and indicate that endogenous α-synuclein contributes to the specific vulnerability of dopaminergic neurons to systemic mitochondrial inhibition. Our findings are consistent with a model in which genetic variants influencing α-synuclein expression modulate cellular susceptibility to environmental exposures in PD patients. shRNA targeting the SNCA transcript should be further evaluated as a possible neuroprotective therapy in PD. | | | 26075822
|
Striatal Injury with 6-OHDA Transiently Increases Cerebrospinal GFAP and S100B. Batassini, C; Broetto, N; Tortorelli, LS; Borsoi, M; Zanotto, C; Galland, F; Souza, TM; Leite, MC; Gonçalves, CA Neural plasticity
2015
387028
2015
Show Abstract
Both glial fibrillary acidic protein (GFAP) and S100B have been used as markers of astroglial plasticity, particularly in brain injury; however, they do not necessarily change in the same time frame or direction. Herein, we induced a Parkinson's disease (PD) model via a 6-OHDA intrastriatal injection in rats and investigated the changes in GFAP and S100B using ELISA in the substantia nigra (SN), striatum, and cerebrospinal fluid on the 1st, 7th, and 21st days following the injection. The model was validated using measurements of rotational behaviour induced by methylphenidate and tyrosine hydroxylase in the dopaminergic pathway. To our knowledge, this is the first measurement of cerebrospinal fluid S100B and GFAP in the 6-OHDA model of PD. Gliosis (based on a GFAP increase) was identified in the striatum, but not in the SN. We identified a transitory increment of cerebrospinal fluid S100B and GFAP on the 1st and 7th days, respectively. This initial change in cerebrospinal fluid S100B was apparently related to the mechanical lesion. However, the 6-OHDA-induced S100B secretion was confirmed in astrocyte cultures. Current data reinforce the idea that glial changes precede neuronal damage in PD; however, these findings also indicate that caution is necessary regarding the interpretation of data in this PD model. | | | 26090233
|
Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration. Van Rompuy, AS; Oliveras-Salvá, M; Van der Perren, A; Corti, O; Van den Haute, C; Baekelandt, V Molecular neurodegeneration
10
23
2015
Show Abstract
Alpha-synuclein is a key protein in the pathogenesis of Parkinson's disease. Mutations in the parkin gene are the most common cause of early-onset autosomal recessive Parkinson's disease, probably through a loss-of-function mechanism. However, the molecular mechanism by which loss of parkin function leads to the development of the disease and the role of alpha-synuclein in parkin-associated Parkinson's disease is still not elucidated. Conflicting results were reported about the effect of the absence of parkin on alpha-synuclein-mediated neurotoxicity using a transgenic approach. In this study, we investigated the effect of loss of parkin on alpha-synuclein neuropathology and toxicity in adult rodent brain using viral vectors. Therefore, we overexpressed human wild type alpha-synuclein in the substantia nigra of parkin knockout and wild type mice using two different doses of recombinant adeno-associated viral vectors.No difference was observed in nigral dopaminergic cell loss between the parkin knockout mice and wild type mice up to 16 weeks after viral vector injection. However, the level of alpha-synuclein phosphorylated at serine residue 129 in the substantia nigra was significantly increased in the parkin knockout mice compared to the wild type mice while the total expression level of alpha-synuclein was similar in both groups. The increased alpha-synuclein phosphorylation was confirmed in a parkin knockdown cell line.These findings support a functional relationship between parkin and alpha-synuclein phosphorylation in rodent brain. | | | 26099628
|
Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Ke, XX; Zhang, D; Zhao, H; Hu, R; Dong, Z; Yang, R; Zhu, S; Xia, Q; Ding, HF; Cui, H Oncology letters
9
2507-2514
2015
Show Abstract
Neuroblastoma is the one of the most common extracranial childhood malignancies, accounting for ∼15% of tumor-associated deaths in children. It is generally considered that neuroblastoma originates from neural crest cells in the paravertebral sympathetic ganglia and the adrenal medulla. However, the mechanism by which neuroblastoma arises during sympathetic neurogenesis and the cellular mechanism that drives neuroblastoma development remains unclear. The present study investigated the cell components during neuroblastoma development in the tyrosine hydroxylase-v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (TH-MYCN) mouse model, a transgenic mouse model of human neuroblastoma. The present study demonstrates that paired-like homeobox 2b (Phox2B)(+) neuronal progenitors are the major cellular population in hyperplastic lesions and primary tumors. In addition, Phox2B(+) neuronal progenitors in hyperplastic lesions or primary tumors were observed to be in an actively proliferative and undifferentiated state. The current study also demonstrated that high expression levels of Phox2B promotes neuroblastoma cell proliferation and xenograft tumor growth. These findings indicate that the proliferation of undifferentiated Phox2B(+) neuronal progenitors is a cellular mechanism that promotes neuroblastoma development and indicates that Phox2B is a critical regulator in neuroblastoma pathogenesis. | | | 26137098
|
NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Mellone, M; Stanic, J; Hernandez, LF; Iglesias, E; Zianni, E; Longhi, A; Prigent, A; Picconi, B; Calabresi, P; Hirsch, EC; Obeso, JA; Di Luca, M; Gardoni, F Frontiers in cellular neuroscience
9
245
2015
Show Abstract
Levodopa-induced dyskinesias (LIDs) are major complications in the pharmacological management of Parkinson's disease (PD). Abnormal glutamatergic transmission in the striatum is considered a key factor in the development of LIDs. This work aims at: (i) characterizing N-methyl-D-aspartate (NMDA) receptor GluN2A/GluN2B subunit ratio as a common synaptic trait in rat and primate models of LIDs as well as in dyskinetic PD patients; and (ii) validating the potential therapeutic effect of a cell-permeable peptide (CPP) interfering with GluN2A synaptic localization on the dyskinetic behavior of these experimental models of LIDs. Here we demonstrate an altered ratio of synaptic GluN2A/GluN2B-containing NMDA receptors in the striatum of levodopa-treated dyskinetic rats and monkeys as well as in post-mortem tissue from dyskinetic PD patients. The modulation of synaptic NMDA receptor composition by a cell-permeable peptide interfering with GluN2A subunit interaction with the scaffolding protein postsynaptic density protein 95 (PSD-95) leads to a reduction in the dyskinetic motor behavior in the two animal models of LIDs. Our results indicate that targeting synaptic NMDA receptor subunit composition may represent an intriguing therapeutic approach aimed at ameliorating levodopa motor side effects. | | | 26217176
|
PGC-1α activity in nigral dopamine neurons determines vulnerability to α-synuclein. Ciron, C; Zheng, L; Bobela, W; Knott, GW; Leone, TC; Kelly, DP; Schneider, BL Acta neuropathologica communications
3
16
2015
Show Abstract
Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of age-dependent neurodegenerative diseases. PGC-1α, a master regulator of mitochondrial biogenesis and cellular antioxidant defense, has emerged as a possible therapeutic target for Parkinson's disease, with important roles in the function and survival of dopaminergic neurons in the substantia nigra. The objective of this study is to determine if the loss of PGC-1α activity contributes to α-synuclein-induced degeneration.We explore the vulnerability of PGC-1α null mice to the accumulation of human α-synuclein in nigral neurons, and assess the neuroprotective effect of AAV-mediated PGC-1α expression in this experimental model. Using neuronal cultures derived from these mice, mitochondrial respiration and production of reactive oxygen species are assessed in conditions of human α-synuclein overexpression. We find ultrastructural evidence for abnormal mitochondria and fragmented endoplasmic reticulum in the nigral dopaminergic neurons of PGC-1α null mice. Furthermore, PGC-1α null nigral neurons are more prone to degenerate following overexpression of human α-synuclein, an effect more apparent in male mice. PGC-1α overexpression restores mitochondrial morphology, oxidative stress detoxification and basal respiration, which is consistent with the observed neuroprotection against α-synuclein toxicity in male PGC-1α null mice.Altogether, our results highlight an important role for PGC-1α in controlling the mitochondrial function of nigral neurons accumulating α-synuclein, which may be critical for gender-dependent vulnerability to Parkinson's disease. | | | 25853296
|
Small peptide inhibitor of JNK3 protects dopaminergic neurons from MPTP induced injury via inhibiting the ASK1-JNK3 signaling pathway. Pan, J; Li, H; Zhang, B; Xiong, R; Zhang, Y; Kang, WY; Chen, W; Zhao, ZB; Chen, SD PloS one
10
e0119204
2015
Show Abstract
The ASK1-JNK3 signaling pathway plays a pivotal role in the pathogenesis of Parkinson's disease (PD). The specific binding of β-arrestin2 to JNK3 is essential for activation of the ASK1-JNK3 cascade, representing a potential therapeutic target for preventing dopaminergic neuronal death in PD. The aim of this study was to identify a novel strategy for the prevention of dopaminergic neuronal death in PD.Based on the specific binding of β-arrestin2 to JNK3, a 21-amino-acid fusion peptide, termed JNK3-N-Tat, was synthesized. We evaluated the ability of this peptide to inhibit the binding of β-arrestin2 to its target domain in JNK3 in vitro and in vivo.The JNK3-N-Tat peptide inhibited activation of the ASK1-JNK3 cascade by disrupting the interaction between β-arrestin2 and JNK3. JNK3-N-Tat exerted beneficial effects through pathways downstream of JNK3 and improved mitochondrial function, resulting in attenuated MPP+/MPTP-induced damage. JNK3-N-Tat protected mesencephalic dopaminergic neurons against MPTP-induced toxicity.JNK3-N-Tat, a JNK3-inhibitory peptide, protects dopaminergic neurons against MPP+/MPTP-induced injury by inhibiting the ASK1-JNK3 signaling pathway. | | | 25856433
|