A secretory kinase complex regulates extracellular protein phosphorylation. Cui, J; Xiao, J; Tagliabracci, VS; Wen, J; Rahdar, M; Dixon, JE eLife
4
e06120
2015
Show Abstract
Although numerous extracellular phosphoproteins have been identified, the protein kinases within the secretory pathway have only recently been discovered, and their regulation is virtually unexplored. Fam20C is the physiological Golgi casein kinase, which phosphorylates many secreted proteins and is critical for proper biomineralization. Fam20A, a Fam20C paralog, is essential for enamel formation, but the biochemical function of Fam20A is unknown. Here we show that Fam20A potentiates Fam20C kinase activity and promotes the phosphorylation of enamel matrix proteins in vitro and in cells. Mechanistically, Fam20A is a pseudokinase that forms a functional complex with Fam20C, and this complex enhances extracellular protein phosphorylation within the secretory pathway. Our findings shed light on the molecular mechanism by which Fam20C and Fam20A collaborate to control enamel formation, and provide the first insight into the regulation of secretory pathway phosphorylation. | | 25789606
|
Accumulation of the PX domain mutant Frank-ter Haar syndrome protein Tks4 in aggresomes. Ádám, C; Fekete, A; Bőgel, G; Németh, Z; Tőkési, N; Ovádi, J; Liliom, K; Pesti, S; Geiszt, M; Buday, L Cell communication and signaling : CCS
13
33
2015
Show Abstract
Cells deploy quality control mechanisms to remove damaged or misfolded proteins. Recently, we have reported that a mutation (R43W) in the Frank-ter Haar syndrome protein Tks4 resulted in aberrant intracellular localization.Here we demonstrate that the accumulation of Tks4(R43W) depends on the intact microtubule network. Detergent-insoluble Tks4 mutant colocalizes with the centrosome and its aggregate is encaged by the intermediate filament protein vimentin. Both the microtubule inhibitor nocodazole and the histone deacetylase inhibitor Trichostatin A inhibit markedly the aggresome formation in cells expressing Tks4(R43W). Finally, pretreatment of cells with the proteasome inhibitor MG132 markedly increases the level of aggresomes formed by Tks4(R43W). Furthermore, two additional mutant Tks4 proteins (Tks4(1-48) or Tks4(1-341)) have been investigated. Whereas the shorter Tks4 mutant, Tks4(1-48), shows no expression at all, the longer Tks4 truncation mutant accumulates in the nuclei of the cells.Our results suggest that misfolded Frank-ter Haar syndrome protein Tks4(R43W) is transported via the microtubule system to the aggresomes. Lack of expression of Tks4(1-48) or aberrant intracellular expressions of Tks4(R43W) and Tks4(1-341) strongly suggest that these mutations result in dysfunctional proteins which are not capable of operating properly, leading to the development of FTHS. | | 26183326
|
Mitotic phosphorylation of histone H3 threonine 80. Hammond, SL; Byrum, SD; Namjoshi, S; Graves, HK; Dennehey, BK; Tackett, AJ; Tyler, JK Cell cycle (Georgetown, Tex.)
13
440-52
2014
Show Abstract
The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells. | Immunofluorescence | 24275038
|
A disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homology (PHB) domain protein podocin. Schurek, EM; Völker, LA; Tax, J; Lamkemeyer, T; Rinschen, MM; Ungrue, D; Kratz, JE; Sirianant, L; Kunzelmann, K; Chalfie, M; Schermer, B; Benzing, T; Höhne, M The Journal of biological chemistry
289
11262-71
2014
Show Abstract
Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocin(P118L)) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2(P134S)). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. Podocin(P118L) and MEC-2(P134S) did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier. | | 24596097
|
Mutations in NEK8 link multiple organ dysplasia with altered Hippo signalling and increased c-MYC expression. Frank, V; Habbig, S; Bartram, MP; Eisenberger, T; Veenstra-Knol, HE; Decker, C; Boorsma, RA; Göbel, H; Nürnberg, G; Griessmann, A; Franke, M; Borgal, L; Kohli, P; Völker, LA; Dötsch, J; Nürnberg, P; Benzing, T; Bolz, HJ; Johnson, C; Gerkes, EH; Schermer, B; Bergmann, C Human molecular genetics
22
2177-85
2013
Show Abstract
Mutations affecting the integrity and function of cilia have been identified in various genes over the last decade accounting for a group of diseases called ciliopathies. Ciliopathies display a broad spectrum of phenotypes ranging from mild manifestations to lethal combinations of multiple severe symptoms and most of them share cystic kidneys as a common feature. Our starting point was a consanguineous pedigree with three affected fetuses showing an early embryonic phenotype with enlarged cystic kidneys, liver and pancreas and developmental heart disease. By genome-wide linkage analysis, we mapped the disease locus to chromosome 17q11 and identified a homozygous nonsense mutation in NEK8/NPHP9 that encodes a kinase involved in ciliary dynamics and cell cycle progression. Missense mutations in NEK8/NPHP9 have been identified in juvenile cystic kidney jck mice and in patients suffering from nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. This work confirmed a complete loss of NEK8 expression in the affected fetuses due to nonsense-mediated decay. In cultured fibroblasts derived from these fetuses, the expression of prominent polycystic kidney disease genes (PKD1 and PKD2) was decreased, whereas the oncogene c-MYC was upregulated, providing potential explanations for the observed renal phenotype. We furthermore linked NEK8 with NPHP3, another NPH protein known to cause a very similar phenotype in case of null mutations. Both proteins interact and activate the Hippo effector TAZ. Taken together, our study demonstrates that NEK8 is essential for organ development and that the complete loss of NEK8 perturbs multiple signalling pathways resulting in a severe early embryonic phenotype. | | 23418306
|
A novel domain regulating degradation of the glomerular slit diaphragm protein podocin in cell culture systems. Gödel, M; Ostendorf, BN; Baumer, J; Weber, K; Huber, TB PloS one
8
e57078
2013
Show Abstract
Mutations in the gene NPHS2 are the most common cause of hereditary steroid-resistant nephrotic syndrome. Its gene product, the stomatin family member protein podocin represents a core component of the slit diaphragm, a unique structure that bridges the space between adjacent podocyte foot processes in the kidney glomerulus. Dislocation and misexpression of slit diaphragm components have been described in the pathogenesis of acquired and hereditary nephrotic syndrome. However, little is known about mechanisms regulating cellular trafficking and turnover of podocin. Here, we discover a three amino acids-comprising motif regulating intracellular localization of podocin in cell culture systems. Mutations of this motif led to markedly reduced degradation of podocin. These findings give novel insight into the molecular biology of the slit diaphragm protein podocin, enabling future research to establish the biological relevance of podocin turnover and localization. | | 23437316
|
Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. Zhou, L; Li, Y; Zhou, D; Tan, RJ; Liu, Y Journal of the American Society of Nephrology : JASN
24
771-85
2013
Show Abstract
Aging is an independent risk factor for CKD, but the molecular mechanisms that link aging and CKD are not well understood. The antiaging protein Klotho may be an endogenous antagonist of Wnt/β-catenin signaling, which promotes fibrogenesis, suggesting that loss of Klotho may contribute to CKD through increased Wnt/β-catenin activity. Here, normal adult kidneys highly expressed Klotho in the tubular epithelium, but various models of nephropathy exhibited markedly less expression of Klotho. Loss of Klotho was closely associated with increased β-catenin in the diseased kidneys, suggesting an inverse correlation between Klotho and canonical Wnt signaling. In vitro, both full-length and secreted Klotho bound to multiple Wnts, including Wnt1, Wnt4, and Wnt7a. Klotho repressed gene transcription induced by Wnt but not by active β-catenin. Furthermore, Klotho blocked Wnt-triggered activation and nuclear translocation of β-catenin, as well as the expression of its target genes in tubular epithelial cells. Investigating potential mediators of Klotho loss in CKD, we found that TGF-β1 suppressed Klotho expression and concomitantly activated β-catenin; conversely, overexpression of Klotho abolished fibrogenic effects of TGF-β1. In two mouse models of CKD induced by unilateral ureteral obstruction or adriamycin, in vivo expression of secreted Klotho inhibited the activation of renal β-catenin and expression of its target genes. Secreted Klotho also suppressed myofibroblast activation, reduced matrix expression, and ameliorated renal fibrosis. Taken together, these results suggest that Klotho is an antagonist of endogenous Wnt/β-catenin activity; therefore, loss of Klotho may contribute to kidney injury by releasing the repression of pathogenic Wnt/β-catenin signaling. | | 23559584
|
Characterization of a short isoform of the kidney protein podocin in human kidney. Völker, LA; Schurek, EM; Rinschen, MM; Tax, J; Schutte, BA; Lamkemeyer, T; Ungrue, D; Schermer, B; Benzing, T; Höhne, M BMC Nephrol
14
102
2013
Show Abstract
Steroid resistant nephrotic syndrome is a severe hereditary disease often caused by mutations in the NPHS2 gene. This gene encodes the lipid binding protein podocin which localizes to the slit diaphragm of podocytes and is essential for the maintenance of an intact glomerular filtration barrier. Podocin is a hairpin-like membrane-associated protein that multimerizes to recruit lipids of the plasma membrane. Recent evidence suggested that podocin may exist in a canonical, well-studied large isoform and an ill-defined short isoform. Conclusive proof of the presence of this new podocin protein in the human system is still lacking.We used database analyses to identify organisms for which an alternative splice variant has been annotated. Mass spectrometry was employed to prove the presence of the shorter isoform of podocin in human kidney lysates. Immunofluorescence, sucrose density gradient fractionation and PNGase-F assays were used to characterize this short isoform of human podocin.Mass spectrometry revealed the existence of the short isoform of human podocin on protein level. We cloned the coding sequence from a human kidney cDNA library and showed that the expressed short variant was retained in the endoplasmic reticulum while still associating with detergent-resistant membrane fractions in sucrose gradient density centrifugation. The protein is partially N-glycosylated which implies the presence of a transmembranous form of the short isoform.A second isoform of human podocin is expressed in the kidney. This isoform lacks part of the PHB domain. It can be detected on protein level. Distinct subcellular localization suggests a physiological role for this isoform which may be different from the well-studied canonical variant. Possibly, the short isoform influences lipid and protein composition of the slit diaphragm complex by sequestration of lipid and protein interactors into the endoplasmic reticulum. | | 23648087
|
A cell-permeable hairpin peptide inhibits hepatitis C viral nonstructural protein 5A-mediated translation and virus production. Khachatoorian, R; Arumugaswami, V; Ruchala, P; Raychaudhuri, S; Maloney, EM; Miao, E; Dasgupta, A; French, SW Hepatology (Baltimore, Md.)
55
1662-72
2012
Show Abstract
NS5A is a key regulator of the hepatitis C virus (HCV) life cycle including RNA replication, assembly, and translation. We and others have shown that NS5A augments HCV internal ribosomal entry site (IRES)-mediated translation. Furthermore, Quercetin treatment and heat shock protein (HSP) 70 knockdown inhibit the NS5A-driven augmentation of IRES-mediated translation and infectious virus production. We have also coimmunoprecipitated HSP70 with NS5A and demonstrated cellular colocalization, leading to the hypothesis that the NS5A/HSP70 complex formation is important for IRES-mediated translation. Here, we have identified the NS5A region responsible for complex formation through in vitro deletion analyses. Deletion of NS5A domains II and III failed to reduce HSP70 binding, whereas domain I deletion eliminated complex formation. NS5A domain I alone also bound HSP70. Deletion mapping of domain I identified the C-terminal 34 amino acids (C34) as the interaction site. Furthermore, addition of C34 to domains II and III restored complex formation. C34 expression significantly reduced intracellular viral protein levels, in contrast to same-size control peptides from other NS5A domains. C34 also competitively inhibited NS5A-augmented IRES-mediated translation, whereas controls did not. Triple-alanine scan mutagenesis determined that an exposed beta-sheet hairpin in C34 was primarily responsible for NS5A-augmented IRES-mediated translation. Moreover, treatment with a 10-amino acid peptide derivative of C34 suppressed NS5A-augmented IRES-mediated translation and significantly inhibited intracellular viral protein synthesis, with no associated cytotoxicity.These results support the hypothesis that the NS5A/HSP70 complex augments viral IRES-mediated translation, identify a sequence-specific hairpin element in NS5A responsible for complex formation, and demonstrate the functional significance of C34 hairpin-mediated NS5A/HSP70 interaction. Identification of this element may allow for further interrogation of NS5A-mediated IRES activity, sequence-specific HSP recognition, and rational drug design. (HEPATOLOGY 2012;55:1662-1672). | | 22183951
|
Phosphorylation at serine 331 is required for Aurora B activation. Petsalaki, E; Akoumianaki, T; Black, EJ; Gillespie, DA; Zachos, G The Journal of cell biology
195
449-66
2011
Show Abstract
Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora B(S331A), in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation. | | 22024163
|