Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalog Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
If you have chosen panel analytes and then choose a premix or single plex kit, you will lose that customization.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalog Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalog Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalog Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Attention: We have moved. EMD Millipore products are no longer available for purchase on emdmillipore.com.Learn More
Capillary electrophoresis is a technique that uses very narrow-bore capillaries, typically 50 µm internal diameter and 300 µm external diameter, to separate a wide array of large and small molecules. Figure 1 is a schematic of a CE system. It includes a power supply, capillary, buffer reservoirs, and detector.
Figure 1: Schematic of a Capillary Electrophoresis (CE) system
The heart of the CE system is the capillary where separation takes place. The capillaries are mostly open tubular and not packed, resulting to excellent resolution and very sharp peaks. The high voltage is required to move the buffer and analyte molecules through the capillary. Charged molecules are separated along the capillary due to electrophoretic migration and electroosmotic flow. Electrophoretic migration causes charged molecules to move towards the electrode of opposite charge, hence positive and negative charged molecules migrate at different rates. Electroosmotic flow is due to the presence of charged groups on the surface of the support medium, for instance silanol groups on the surface of the glass wall used in CE.
In CE, the sample is introduced by immersing the end of the capillary into a sample vial and applying pressure, vacuum or voltage. Different modes of capillary electrophoretic separations can be performed using a standard CE instrument, depending on the types of capillary and electrolytes used. Some examples are:
Capillary Zone Electrophoresis (CZE), also known as free-solution CE (FSCE), is the simplest and most widely used form of CE. The separation mechanism is based on differences in the charge-to-mass ratio of the analytes.
Capillary Gel Electrophoresis (CGE) is the traditional gel electrophoresis that takes place in a capillary. It uses polymers in solution to create a molecular sieve that allows analytes having similar charge-to-mass ratios to be resolved by size.
Capillary Isoelectric Focusing (CIEF) separates amphoteric molecules in a pH gradient generated between the cathode and anode. The analyte molecules migrate until it reaches its isoelectric point (pI); migration then stops and the sample is focused into a tight zone.
Micellar Electrokinetic Capillary Chromatography (MECC OR MEKC) is a form of CE in which surfactants are added to the buffer solution at concentrations that form micelles. Separation takes placed because of the differential partition between the micelle and the solvent.
Analytes are detected using one of several possible detection methods - UV-Vis, fluorescence, mass spectrometry, and electrochemical detection.