Well plate-coupled microfluidic devices designed for facile image-based cell adhesion and transmigration assays. Carolyn G Conant,Michael A Schwartz,Cristian Ionescu-Zanetti Journal of biomolecular screening
15
2010
Show Abstract
Microfluidic devices have become invaluable tools in recent years to model biological phenomena. Here, the authors present a well plate microfluidic (WPM) device for conducting cell biology assays under shear flow. Physiological shear flow conditions of cell-cell and cell-ligand adhesion within this device produce results with higher biological significance than conventional well plates. The WPM format also produced significant work flow advantages such as faster liquid handling compared to static well plate assays. The authors used the VLA-4-VCAM-1 cell adhesion model as the basis for a rapid, higher throughput adhesion inhibition screen of monoclonal antibodies against VLA-4. Using the WPM device, they generated IC(50) dose-response curves 96 times faster than conventional flow cells. The WPM device was also used to study transmigration of mononuclear cells through endothelial cell monolayers. Twenty-four channels of transmigration data were generated in a single experiment. | 19965806
|
Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. Wayner, E A, et al. J. Cell Biol., 109: 1321-30 (1989)
1989
Show Abstract
Using mAb technology (Wayner, E. A., W. G. Carter, R. Piotrowicz, and T. J. Kunicki. 1988. J. Cell Biol. 107:1881-1891), we have identified a new fibronectin receptor that is identical to the integrin receptor alpha 4 beta 1. mAbs P3E3, P4C2, and P4G9 recognized epitopes on the alpha 4 subunit and completely inhibited the adhesion of peripheral blood and cultured T lymphocytes to a 38-kD tryptic fragment of plasma fibronectin containing the carboxy-terminal Heparin II domain and part of the type III connecting segment (IIICS). The ligand in IIICS for alpha 4 beta 1 was the CS-1 region previously defined as an adhesion site for melanoma cells. The functionally defined mAbs to alpha 4 partially inhibited T lymphocyte adhesion to intact plasma fibronectin and had no effect on their attachment to an 80-kD tryptic fragment containing the RGD (arg-gly-asp) adhesion sequence. mAbs (P1D6 and P1F8) to the previously described fibronectin receptor, alpha 5 beta 1, completely inhibited T lymphocyte adhesion to the 80-kD fragment but had no effect on their attachment to the 38-kD fragment or to CS-1. Both alpha 4 beta 1 and alpha 5 beta 1 localized to focal adhesions when fibroblasts that express these receptors were grown on fibronectin-coated surfaces. These findings demonstrated a specific interaction of both receptors with fibronectin at focal contacts. In conclusion, these findings show clearly that cultured T lymphocytes use two independent receptors during attachment to fibronectin and that (a) alpha 5 beta 1 is the receptor for the RGD containing cell adhesion domain, and (b) alpha 4 beta 1 is the receptor for a carboxy-terminal cell adhesion region containing the Heparin II and IIICS domains. Furthermore, these data also show that T lymphocytes express a clear preference for a region of molecular heterogeneity in IIICS (CS-1) generated by alternative splicing of fibronectin pre-mRNA and that alpha 4 beta 1 is the receptor for this adhesion site. | 2527858
|