Millipore Sigma Vibrant Logo
 

autophagy


532 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (391)
  • (6)
Can't Find What You're Looking For?
Contact Customer Service

 
  • The autophagy GABARAPL1 gene is epigenetically regulated in breast cancer models. 26474850

    The GABARAP family members (GABARAP, GABARAPL1/GEC1 and GABARAPL2 /GATE-16) are involved in the intracellular transport of receptors and the autophagy pathway. We previously reported that GABARAPL1 expression was frequently downregulated in cancer cells while a high GABARAPL1 expression is a good prognosis marker for patients with lymph node-positive breast cancer.In this study, we asked using qRT-PCR, western blotting and epigenetic quantification whether the expression of the GABARAP family was regulated in breast cancer by epigenetic modifications.Our data demonstrated that a specific decrease of GABARAPL1 expression in breast cancers was associated with both DNA methylation and histone deacetylation and that CREB-1 recruitment on GABARAPL1 promoter was required for GABARAPL1 expression.Our work strongly suggests that epigenetic inhibitors and CREB-1 modulators may be used in the future to regulate autophagy in breast cancer cells.
    Document Type:
    Reference
    Product Catalog Number:
    AB15278
  • Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. 21471734

    Both anabolism and catabolism of the amino acids released by starvation-induced autophagy are essential for cell survival, but their actual metabolic contributions in adult animals are poorly understood. Herein, we report that, in mice, liver autophagy makes a significant contribution to the maintenance of blood glucose by converting amino acids to glucose via gluconeogenesis. Under a synchronous fasting-initiation regimen, autophagy was induced concomitantly with a fall in plasma insulin in the presence of stable glucagon levels, resulting in a robust amino acid release. In liver-specific autophagy (Atg7)-deficient mice, no amino acid release occurred and blood glucose levels continued to decrease in contrast to those of wild-type mice. Administration of serine (30 mg/animal) exerted a comparable effect, raising the blood glucose levels in both control wild-type and mutant mice under starvation. Thus, the absence of the amino acids that were released by autophagic proteolysis is a major reason for a decrease in blood glucose. Autophagic amino acid release in control wild-type livers was significantly suppressed by the prior administration of glucose, which elicited a prompt increase in plasma insulin levels. This indicates that insulin plays a dominant role over glucagon in controlling liver autophagy. These results are the first to show that liver-specific autophagy plays a role in blood glucose regulation.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501
    Product Catalog Name:
    Anti-Actin Antibody, clone C4
  • Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. 22361585

    Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.
    Document Type:
    Reference
    Product Catalog Number:
    AB3613
    Product Catalog Name:
    Anti-Caspase 12 Antibody, NT
  • Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. 22521819

    Autophagy, the bulk intracellular degradation of cytoplasmic constituents, can be a pro-survival or a pro-death mechanism depending on the context. A recent study showed that autophagy was activated in the phase of early brain injury following subarachnoid hemorrhage (SAH). However, whether autophagy activation after SAH is protective or harmful is still elusive. This study was undertaken to determine the potential role of autophagy pathway activation in early brain injury following SAH. The rats were pretreated with intracerebral ventricular infusion of either the autophagy inducer rapamycin (RAP) or inhibitor 3-methyladenine (3-MA) before SAH onset. The results from electron microscopic examinations showed that RAP administration caused the formation of autophagosomal vacuoles, and 3-MA induced neuronal apoptosis. RAP treatment significantly increased the expression of autophagic proteins Atg5 and Beclin 1, the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II to LC3-I and reduced caspase-3 activity, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive cells, brain edema and neurological deficits after SAH. Conversely, 3-MA treatment exacerbated early brain injury. RAP treatment significantly increased the expression of the autophagic proteins Atg5 and Beclin 1, the ratio of LC3-II to LC3-I and reduced caspase-3 activity, the number of TUNEL-positive cells, brain edema and neurological deficits after SAH. Conversely, 3-MA treatment reversed these changes and exacerbated early brain injury. To further clarify the mechanism of autophagy protection, we investigated the expression levels of key apoptosis-related molecules. The results showed that RAP administration decreased Bax translocation to the mitochondria and downstream cytochrome c release from the mitochondria to the cytosol. Taken together, our study indicates that activation of autophagic pathways reduces early brain injury after SAH. This neuroprotective effect is likely exerted by anti-apoptotic mechanisms.
    Document Type:
    Reference
    Product Catalog Number:
    S7110
    Product Catalog Name:
    ApopTag® Fluorescein In Situ Apoptosis Detection Kit
  • Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. 24089205

    The primary cilium is a microtubule-based organelle that functions in sensory and signalling pathways. Defects in ciliogenesis can lead to a group of genetic syndromes known as ciliopathies. However, the regulatory mechanisms of primary ciliogenesis in normal and cancer cells are incompletely understood. Here we demonstrate that autophagic degradation of a ciliopathy protein, OFD1 (oral-facial-digital syndrome 1), at centriolar satellites promotes primary cilium biogenesis. Autophagy is a catabolic pathway in which cytosol, damaged organelles and protein aggregates are engulfed in autophagosomes and delivered to lysosomes for destruction. We show that the population of OFD1 at the centriolar satellites is rapidly degraded by autophagy upon serum starvation. In autophagy-deficient Atg5 or Atg3 null mouse embryonic fibroblasts, OFD1 accumulates at centriolar satellites, leading to fewer and shorter primary cilia and a defective recruitment of BBS4 (Bardet-Biedl syndrome 4) to cilia. These defects are fully rescued by OFD1 partial knockdown that reduces the population of OFD1 at centriolar satellites. More strikingly, OFD1 depletion at centriolar satellites promotes cilia formation in both cycling cells and transformed breast cancer MCF7 cells that normally do not form cilia. This work reveals that removal of OFD1 by autophagy at centriolar satellites represents a general mechanism to promote ciliogenesis in mammalian cells. These findings define a newly recognized role of autophagy in organelle biogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    ABC961
  • Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. 25409294

    Autophagy is activated in ischemic heart diseases, but its dynamics and functional roles remain unclear and controversial. In this study, we investigated the dynamics and role of autophagy and the mechanism(s), if any, during postinfarction cardiac remodeling.Acute myocardial infarction (AMI) was induced by ligating left anterior descending (LAD) coronary artery. Autophagy was found to be induced sharply 12-24 hours after surgery by testing LC3 modification and Electron microscopy. P62 degradation in the infarct border zone was increased from day 0.5 to day 3, and however, decreased from day 5 until day 21 after LAD ligation. These results indicated that autophagy was induced in the acute phase of AMI, and however, impaired in the latter phase of AMI. To investigate the significance of the impaired autophagy in the latter phase of AMI, we treated the mice with Rapamycin (an autophagy enhancer, 2.0 mg/kg/day) or 3-methyladenine (3MA, an autophagy inhibitor, 15 mg/kg/day) one day after LAD ligation until the end of experiment. The results showed that Rapamycin attenuated, while 3MA exacerbated, postinfarction cardiac remodeling and dysfunction respectively. In addition, Rapamycin protected the H9C2 cells against oxygen glucose deprivation in vitro. Specifically, we found that Rapamycin attenuated NFκB activation after LAD ligation. And the inflammatory response in the acute stage of AMI was significantly restrained with Rapamycin treatment. In vitro, inhibition of NFκB restored autophagy in a negative reflex.Sustained myocardial ischemia impairs cardiomyocyte autophagy, which is an essential mechanism that protects against adverse cardiac remodeling. Augmenting autophagy could be a therapeutic strategy for acute myocardial infarction.
    Document Type:
    Reference
    Product Catalog Number:
    05-1416
    Product Catalog Name:
    Anti-CD45 Antibody, clone IBL-5/25
  • Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart. 23308102

    Autophagy is a bulk degradation mechanism for cytosolic proteins and organelles. The heart undergoes hypertrophy in response to mechanical load but hypertrophy can regress upon unloading. We hypothesize that autophagy plays an important role in mediating regression of cardiac hypertrophy during unloading. Mice were subjected to transverse aortic constriction (TAC) for 1 week, after which the constriction was removed (DeTAC). Regression of cardiac hypertrophy was observed after DeTAC, as indicated by reduction of LVW/BW and cardiomyocyte cross-sectional area. Indicators of autophagy, including LC3-II expression, p62 degradation and GFP-LC3 dots/cell, were significantly increased after DeTAC, suggesting that autophagy is induced. Stimulation of autophagy during DeTAC was accompanied by upregulation of FoxO1. Upregulation of FoxO1 and autophagy was also observed in vitro when cultured cardiomyocytes were subjected to mechanical stretch followed by incubation without stretch (de-stretch). Transgenic mice with cardiac-specific overexpression of FoxO1 exhibited smaller hearts and upregulation of autophagy. Overexpression of FoxO1 in cultured cardiomyocytes significantly reduced cell size, an effect which was attenuated when autophagy was inhibited. To further examine the role of autophagy and FoxO1 in mediating the regression of cardiac hypertrophy, beclin1+/- mice and cultured cardiomyocytes transduced with adenoviruses harboring shRNA-beclin1 or shRNA-FoxO1 were subjected to TAC/stretch followed by DeTAC/de-stretch. Regression of cardiac hypertrophy achieved after DeTAC/de-stretch was significantly attenuated when autophagy was suppressed through downregulation of beclin1 or FoxO1. These results suggest that autophagy and FoxO1 play an essential role in mediating regression of cardiac hypertrophy during mechanical unloading.
    Document Type:
    Reference
    Product Catalog Number:
    07-131
    Product Catalog Name:
    Anti-Sirt1(Sir2) Antibody
  • Autophagy Regulates Formation of Primary Cilia in Mefloquine-Treated Cells. 26157548

    Primary cilia have critical roles in coordinating multiple cellular signaling pathways. Dysregulation of primary cilia is implicated in various ciliopathies. To identify specific regulators of autophagy, we screened chemical libraries and identified mefloquine, an anti-malaria medicine, as a potent regulator of primary cilia in human retinal pigmented epithelial (RPE) cells. Not only ciliated cells but also primary cilium length was increased in mefloquine-treated RPE cells. Treatment with mefloquine strongly induced the elongation of primary cilia by blocking disassembly of primary cilium. In addition, we found that autophagy was increased in mefloquine-treated cells by enhancing autophagic flux. Both chemical and genetic inhibition of autophagy suppressed ciliogenesis in mefloquine-treated RPE cells. Taken together, these results suggest that autophagy induced by mefloquine positively regulates the elongation of primary cilia in RPE cells.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501
    Product Catalog Name:
    Anti-Actin Antibody, clone C4
  • Autophagy is essential for cardiac morphogenesis during vertebrate development. 24441423

    Genetic analyses indicate that autophagy, an evolutionarily conserved lysosomal degradation pathway, is essential for eukaryotic differentiation and development. However, little is known about whether autophagy contributes to morphogenesis during embryogenesis. To address this question, we examined the role of autophagy in the early development of zebrafish, a model organism for studying vertebrate tissue and organ morphogenesis. Using zebrafish that transgenically express the fluorescent autophagy reporter protein, GFP-LC3, we found that autophagy is active in multiple tissues, including the heart, during the embryonic period. Inhibition of autophagy by morpholino knockdown of essential autophagy genes (including atg5, atg7, and becn1) resulted in defects in morphogenesis, increased numbers of dead cells, abnormal heart structure, and reduced organismal survival. Further analyses of cardiac development in autophagy-deficient zebrafish revealed defects in cardiac looping, abnormal chamber morphology, aberrant valve development, and ectopic expression of critical transcription factors including foxn4, tbx5, and tbx2. Consistent with these results, Atg5-deficient mice displayed abnormal Tbx2 expression and defects in valve development and chamber septation. Thus, autophagy plays an essential, conserved role in cardiac morphogenesis during vertebrate development.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501R
    Product Catalog Name:
    Anti-Actin Antibody,clone C4