Probing conformational rescue induced by a chemical corrector of F508del-cystic fibrosis transmembrane conductance regulator (CFTR) mutant. Yu, W; Kim Chiaw, P; Bear, CE The Journal of biological chemistry
286
24714-25
2011
Show Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that cause loss of function of the CFTR channel on the apical surface of epithelial cells. The major CF-causing mutation, F508del-CFTR, is misfolded, retained in the endoplasmic reticulum, and degraded. Small molecule corrector compounds have been identified using high throughput screens, which partially rescue the trafficking defect of F508del-CFTR, allowing a fraction of the mutant protein to escape endoplasmic reticulum retention and traffic to the plasma membrane, where it exhibits partial function as a cAMP-regulated chloride channel. A subset of such corrector compounds binds directly to the mutant protein, prompting the hypothesis that they rescue the biosynthetic defect by inducing improved protein conformation. We tested this hypothesis directly by evaluating the consequences of a corrector compound on the conformation of each nucleotide binding domain (NBD) in the context of the full-length mutant protein in limited proteolytic digest studies. Interestingly, we found that VRT-325 was capable of partially restoring compactness in NBD1. However, VRT-325 had no detectable effect on the conformation of the second half of the molecule. In comparison, ablation of the di-arginine sequence, R(553)XR(555) (F508del-KXK-CFTR), modified protease susceptibility of NBD1, NBD2, and the full-length protein. Singly, each intervention led to a partial correction of the processing defect. Together, these interventions restored processing of F508del-CFTR to near wild type. Importantly, however, a defect in NBD1 conformation persisted, as did a defect in channel activation after the combined interventions. Importantly, this defect in channel activation can be fully corrected by the addition of the potentiator, VX-770. | 21602569
|
C terminus of nucleotide binding domain 1 contains critical features for cystic fibrosis transmembrane conductance regulator trafficking and activation. Billet, A; Melin, P; Jollivet, M; Mornon, JP; Callebaut, I; Becq, F The Journal of biological chemistry
285
22132-40
2010
Show Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel physiologically important in fluid-transporting epithelia and pathologically relevant in several human diseases. Here, we show that mutations in the C terminus of the first nucleotide binding domain comprising the latest beta strands (beta(c)5 and beta(c)6) influence the trafficking, channel activity, and pharmacology of CFTR. We mutated CFTR amino acids located in the beta(c)5-beta(c)6 hairpin, within the beta(c)5 strand (H620Q), within the beta-turn linking the two beta strands (E621G, G622D), as well as within (S623A, S624A) and at the extremity (G628R) of the beta(c)6 strand. Functional analysis reveals that the current density was largely reduced for G622D and G628R channels compared with wt CFTR, similar for E621G and S624A, but increased for H620Q and S623A. For G622D and G628R, the abnormal activity is likely due to a defective maturation process, as assessed by the augmented activity and mature C-band observed in the presence of the trafficking corrector miglustat. In addition, in presence of the CFTR activator benzo[c]quinolizinium, the CFTR current density compared with that of wt CFTR was abolished for G622D and G628R channels, but similar for H620Q, S623A, and S624A or slightly increased for E621G. Finally, G622D and G628R were activated by the CFTR agonists genistein, RP-107, and isobutylmethylxanthine. Our results identify the C terminus of the CFTR first nucleotide binding domain as an important molecular site for the trafficking of CFTR protein, for the control of CFTR channel gating, and for the pharmacological effect of a dual activity agent. Full Text Article | 20435887
|
A chemical corrector modifies the channel function of F508del-CFTR. Kim Chiaw, P; Wellhauser, L; Huan, LJ; Ramjeesingh, M; Bear, CE Molecular pharmacology
78
411-8
2010
Show Abstract
The deletion of Phe-508 (F508del) constitutes the most prevalent cystic fibrosis-causing mutation. This mutation leads to cystic fibrosis transmembrane conductance regulator (CFTR) misfolding and retention in the endoplasmic reticulum and altered channel activity in mammalian cells. This folding defect can however be partially overcome by growing cells expressing this mutant protein at low (27 degrees C) temperature. Chemical "correctors" have been identified that are also effective in rescuing the biosynthetic defect in F508del-CFTR, thereby permitting its functional expression at the cell surface. The mechanism of action of chemical correctors remains unclear, but it has been suggested that certain correctors [including 4-cyclohexyloxy-2-(1-[4-(4-methoxy-benzenesulfonyl)-piperazin-1-yl]-ethyl)-quinazoline (VRT-325)] may act to promote trafficking by interacting directly with the mutant protein. To test this hypothesis, we assessed the effect of VRT-325 addition on the channel activity of F508del-CFTR after its surface expression had been "rescued" by low temperature. It is noteworthy that short-term pretreatment with VRT-325 [but not with an inactive analog, 4-hydroxy-2-(1-[4-(4-methoxy-benzenesulfonyl)-piperazin-1-yl]-ethyl)-quinazoline (VRT-186)], caused a modest but significant inhibition of cAMP-mediated halide flux. Furthermore, VRT-325 decreased the apparent ATP affinity of purified and reconstituted F508del-CFTR in our ATPase activity assay, an effect that may account for the decrease in channel activity by temperature-rescued F508del-CFTR. These findings suggest that biosynthetic rescue mediated by VRT-325 may be conferred (at least in part) by direct modification of the structure of the mutant protein, leading to a decrease in its ATP-dependent conformational dynamics. Therefore, the challenge for therapy discovery will be the design of small molecules that bind to promote biosynthetic maturation of the major mutant without compromising its activity in vivo. | 20501743
|
High-content functional screen to identify proteins that correct F508del-CFTR function. Trzcinska-Daneluti, AM; Ly, D; Huynh, L; Jiang, C; Fladd, C; Rotin, D Molecular & cellular proteomics : MCP
8
780-90
2009
Show Abstract
Cystic Fibrosis is caused by mutations in CFTR, with a deletion of a phenylalanine at position 508 (F508del-CFTR) representing the most common mutation. The F508del-CFTR protein exhibits a trafficking defect and is retained in the endoplasmic reticulum. Here we describe the development of a high-content screen based on a functional assay to identify proteins that correct the F508del-CFTR defect. Using a HEK293 MSR GripTite cell line that stably expresses F508del-CFTR, we individually co-expressed approximately 450 unique proteins fused to the Cl(-)-sensitive YFP(H148Q/I152L) mutant. We then tested correction of F508del-CFTR function by the CI(-)/l(-) exchange method following stimulation with forskolin/IBMX/genistein, using quantitative recordings in multiple individual cells with a high-content (high-throughput) Cellomics KSR imaging system. Using this approach, we identified several known and novel proteins that corrected F508del-CFTR function, including STAT1, Endothelin 1, HspA4, SAPK substrate protein 1, AP2M1, LGALS3/galectin-3, Trk-fused gene, Caveolin 2, PAP/REG3alpha, and others. The ability of these correctors to rescue F508del-CFTR trafficking was then validated by demonstrating their enhancement of maturation (appearance of band C) and by cell surface expression of F508del-CFTR bearing HA tag at the ectodomain using confocal microscopy and flow cytometry. These data demonstrate the utility of high-content analyses for identifying proteins that correct mutant CFTR and discover new proteins that stimulate this correction. This assay can also be utilized for RNAi screens to identify inhibitory proteins that block correction of F508del-CFTR, small molecule, and peptide screens. | 19088066
|
Cysteine string protein monitors late steps in cystic fibrosis transmembrane conductance regulator biogenesis. Zhang, H; Schmidt, BZ; Sun, F; Condliffe, SB; Butterworth, MB; Youker, RT; Brodsky, JL; Aridor, M; Frizzell, RA The Journal of biological chemistry
281
11312-21
2006
Show Abstract
We examined the role of the cysteine string protein (Csp) in cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis in relation to another J-domain protein, Hdj-2, a recognized CFTR cochaperone. Increased expression of Csp produced a dose-dependent reduction in mature (band C) CFTR and an increase in immature (band B) CFTR. Exogenous expression of Hdj-2 also increased CFTR band B, but unlike Csp, Hdj-2 increased band C as well. The Csp-induced block of CFTR maturation required Hsp70, because a J-domain mutant (H43Q) that interferes with the ability of Csp to stimulate Hsp70 ATPase activity relieved the Csp-induced block of CFTR maturation. Nevertheless, Csp H43Q still increased immature CFTR. Csp-induced band B CFTR was found adjacent to the nucleus, co-localizing with calnexin, and it remained detergent-soluble. These data indicate that Csp did not block CFTR maturation by promoting the aggregation or degradation of immature CFTR. Csp knockdown by RNA interference produced a 5-fold increase in mature CFTR and augmented cAMP-stimulated CFTR currents. Thus, the production of mature CFTR is inversely related to the expression level of Csp. Both Csp and Hdj-2 associated with the CFTR R-domain in vitro, and Hdj-2 binding was displaced by Csp, suggesting common interaction sites. Combined expression of Csp and Hdj-2 mimicked the effect of Csp alone, a block of CFTR maturation. But together, Csp and Hdj-2 produced additive increases in CFTR band B, and this did not depend on their interactions with Hsp70, consistent with direct chaperone actions of these proteins. Like Hdj-2, Csp reduced the aggregation of NBD1 in vitro in the absence of Hsp70. Our data suggest that both Csp and Hdj-2 facilitate the biosynthesis of immature CFTR, acting as direct CFTR chaperones, but in addition, Csp is positioned later in the CFTR biogenesis cascade where it regulates the production of mature CFTR by limiting its exit from the endoplasmic reticulum. | 16469739
|
Human-specific cystic fibrosis transmembrane conductance regulator antibodies detect in vivo gene transfer to ovine airways. Heather Davidson, Gerry McLachlan, Abigail Wilson, A Christopher Boyd, Ann Doherty, Gordon MacGregor, Lee Davies, Hazel A Painter, Rebecca Coles, Stephen C Hyde, Deborah R Gill, Margarida D Amaral, David D S Collie, David J Porteous, Deborah Penque American journal of respiratory cell and molecular biology
35
72-83
2006
Show Abstract
A panel of 11 human cystic fibrosis transmembrane conductance regulator (hCFTR) antibodies were tested in ovine nasal, tracheal, and bronchial epithelial brushings. Two of these, G449 (polyclonal) and MATG1104 (monoclonal), recognized hCFTR but did not cross react with endogenous sheep CFTR. This specificity allows immunologic detection of hCFTR expressed in gene transfer studies in sheep against the background of endogenous ovine CFTR, thus enhancing the value of the sheep as a model animal in which to study CFTR gene transfer. Studies on mixed populations of human and sheep nasal epithelial cells showed that detection of hCFTR by these two antibodies was possible even at the lowest proportion of human cells (1:100). The hCFTR gene was delivered in vivo by local instillation using polyethylenimine-mediated gene transfer to the ventral surface of the ovine trachea and hCFTR mRNA and protein levels scored in a blinded fashion. Despite abundant hCFTR mRNA expression, the number of cells expressing hCFTR protein detectable by G449 was low (approximately 0.006-0.05%). Immunohistochemistry for hCFTR in animals treated by whole-lung aerosol demonstrated positive cells in sections of tracheal epithelium and in distal conducting airways. The strategic use of hCFTR-specific antibodies supports the utility of the normal sheep as a model for hCFTR gene transfer studies. | 16498081
|
Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Farinha, CM; Amaral, MD Molecular and cellular biology
25
5242-52
2005
Show Abstract
Biosynthesis and folding of multidomain transmembrane proteins is a complex process. Structural fidelity is monitored by endoplasmic reticulum (ER) quality control involving the molecular chaperone calnexin. Retained misfolded proteins undergo ER-associated degradation (ERAD) through the ubiquitin-proteasome pathway. Our data show that the major degradation pathway of the cystic fibrosis transmembrane conductance regulator (CFTR) with F508del (the most frequent mutation found in patients with the genetic disease cystic fibrosis) from the ER is independent of calnexin. Moreover, our results demonstrate that inhibition of mannose-processing enzymes, unlike most substrate glycoproteins, does not stabilize F508del-CFTR, although wild-type (wt) CFTR is drastically stabilized under the same conditions. Together, our data support a novel model by which wt and F508del-CFTR undergo ERAD from two distinct checkpoints, the mutant being disposed of independently of N-glycosidic residues and calnexin, probably by the Hsc70/Hsp70 machinery, and wt CFTR undergoing glycan-mediated ERAD. | 15923638
|
Characterization of novel airway submucosal gland cell models for cystic fibrosis studies da Paula, Ana Carina, et al Cell Physiol Biochem, 15:251-62 (2005)
2005
| 16037690
|
Establishment and characterization of a novel polarized MDCK epithelial cellular model for CFTR studies Mendes, Filipa, et al Cell Physiol Biochem, 16:281-90 (2005)
2005
| 16301828
|
CFTR localization in native airway cells and cell lines expressing wild-type or F508del-CFTR by a panel of different antibodies Carvalho-Oliveira, Isabel, et al J Histochem Cytochem, 52:193-203 (2004)
2004
| 14729871
|