An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision. Khurana, S; Liu, Z; Lewis, AS; Rosa, K; Chetkovich, D; Golding, NL The Journal of neuroscience : the official journal of the Society for Neuroscience
32
2814-23
2012
Show Abstract
In sensory circuits of the brain, developmental changes in the expression and modulation of voltage-gated ion channels are a common occurrence, but such changes are often difficult to assign to clear functional roles. We have explored this issue in the binaural neurons of the medial superior olive (MSO), whose temporal precision in detecting the coincidence of binaural inputs dictates the resolution of azimuthal sound localization. We show that in MSO principal neurons of gerbils during the first week of hearing, a hyperpolarization-activated current (I(h)) progressively undergoes a 13-fold increase in maximal conductance, a greater than 10-fold acceleration of kinetics, and, most surprisingly, a 30 mV depolarizing shift in the voltage dependence of activation. This period is associated with an upregulation of the hyperpolarization-activated and cyclic nucleotide-gated (HCN) channel subunits HCN1, HCN2, and HCN4 in the MSO, but only HCN1 and HCN4 were expressed strongly in principal neurons. I(h) recorded in nucleated patches from electrophysiologically mature MSO neurons (greater than P18) exhibited kinetics and an activation range nearly identical to the I(h) found in whole-cell recordings before hearing onset. These results indicate that the developmental changes in I(h) in MSO neurons can be explained predominantly by modulation from diffusible intracellular factors, and not changes in channel subunit composition. The exceptionally large modulatory changes in I(h), together with refinements in synaptic properties transform the coding strategy from one of summation and integration to the submillisecond coincidence detection known to be required for transmission of sound localization cues. | 22357864
|
HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals. Müller, Frank, et al. Eur. J. Neurosci., 17: 2084-96 (2003)
2003
Show Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels codetermine the integrative behaviour of neurons and shape their response to synaptic stimulation. We used immunohistochemistry and patch-clamp recording to study the composition and distribution of HCN channels in the rat retina. All four HCN channel isoforms (HCN1-4) are expressed differentially in the retina. In particular, different classes of bipolar cells have a different inventory of HCN channels. We found no evidence for the formation of heterooligomeric HCN channels. HCN channels are densely clustered at synaptic terminals of bipolar cells and photoreceptors. This suggests that HCN channels are involved in the control of transmitter release. | 12786975
|