A polyamine-deficient diet prevents oxaliplatin-induced acute cold and mechanical hypersensitivity in rats. Ferrier, J; Bayet-Robert, M; Pereira, B; Daulhac, L; Eschalier, A; Pezet, D; Moulinoux, JP; Balayssac, D PloS one
8
e77828
2013
Show Abstract
Oxaliplatin is an anticancer drug used for the treatment of advanced colorectal cancer, but it can also cause painful peripheral neuropathies. The pathophysiology of these neuropathies has not been yet fully elucidated, but may involve spinal N-methyl-D-aspartate (NMDA) receptors, particularly the NR2B subunit. As polyamines are positive modulators of NMDA-NR2B receptors and mainly originate from dietary intake, the modulation of polyamines intake could represent an interesting way to prevent/modulate neuropathic pain symptoms by opposing glutamate neurotransmission.The effect of a polyamine deficient diet was investigated in an animal model of oxaliplatin-induced acute pain hypersensitivity using behavioral tests (mechanical and cold hypersensitivity). The involvement of spinal glutamate neurotransmission was monitored by using a proton nuclear magnetic resonance spectroscopy based metabolomic approach and by assessing the expression and phosphorylation of the NR2B subunit of the NMDA receptor.A 7-day polyamine deficient diet totally prevented oxaliplatin-induced acute cold hypersensitivity and mechanical allodynia. Oxaliplatin-induced pain hypersensitivity was not associated with an increase in NR2B subunit expression or phosphorylation, but with an increase of glutamate level in the spinal dorsal horn which was completely prevented by a polyamine deficient diet. As a validation that the oxaliplatin-induced hypersensitivity could be due to an increased activity of the spinal glutamate system, an intrathecal administration of the specific NR2B antagonist, ifenprodil, totally reversed oxaliplatin-induced mechanical and cold hypersensitivity.A polyamine deficient diet could represent a promising and valuable nutritional therapy to prevent oxaliplatin-induced acute pain hypersensitivity. | 24204988
|
NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Carroll, Reed C and Zukin, R Suzanne Trends Neurosci., 25: 571-7 (2002)
2002
Show Abstract
Dynamic regulation of synaptic efficacy is thought to play a crucial role in formation of neuronal connections and in experience-dependent modification of neural circuitry. The molecular and cellular mechanisms by which synaptic changes are triggered and expressed are the focus of intense interest. This articles reviews recent evidence that NMDA receptors undergo dynamically regulated targeting and trafficking, and that the physical transport of NMDA receptors in and out of the synaptic membrane contributes to several forms of long-lasting synaptic plasticity. The identification of targeting and internalization sequences in NMDA-receptor subunits has begun the unraveling of some mechanisms that underlie activity-dependent redistribution of NMDA receptors. Given that NMDA receptors are widely expressed throughout the CNS, regulation of NMDA-receptor trafficking provides a potentially important way to modulate efficacy of synaptic transmission. | 12392932
|
LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Grosshans, D R, et al. Nat. Neurosci., 5: 27-33 (2002)
2002
Show Abstract
In the CA1 region of the rat hippocampus, long-term potentiation (LTP) requires the activation of NMDA receptors (NMDARs) and leads to an enhancement of AMPA receptor (AMPAR) function. In neonatal hippocampus, this increase in synaptic strength seems to be mediated by delivery of AMPARs to the synapse. Here we studied changes in surface expression of native AMPA and NMDA receptors following induction of LTP in the adult rat brain. In contrast to early postnatal rats, we find that LTP in the adult rat does not alter membrane association of AMPARs. Instead, LTP leads to rapid surface expression of NMDARs in a PKC- and Src-family-dependent manner. The present study suggests a developmental shift in the LTP-dependent trafficking of AMPA receptors. Moreover, our results indicate that insertion of NMDA receptors may be a key step in regulating synaptic plasticity. | 11740502
|