Redox modulation of NQO1. Siegel, D; Dehn, DD; Bokatzian, SS; Quinn, K; Backos, DS; Di Francesco, A; Bernier, M; Reisdorph, N; de Cabo, R; Ross, D PLoS One
13
e0190717
2018
Show Abstract
NQO1 is a FAD containing NAD(P)H-dependent oxidoreductase that catalyzes the reduction of quinones and related substrates. In cells, NQO1 participates in a number of binding interactions with other proteins and mRNA and these interactions may be influenced by the concentrations of reduced pyridine nucleotides. NAD(P)H can protect NQO1 from proteolytic digestion suggesting that binding of reduced pyridine nucleotides results in a change in NQO1 structure. We have used purified NQO1 to demonstrate the addition of NAD(P)H induces a change in the structure of NQO1; this results in the loss of immunoreactivity to antibodies that bind to the C-terminal domain and to helix 7 of the catalytic core domain. Under normal cellular conditions NQO1 is not immunoprecipitated by these antibodies, however, following treatment with β-lapachone which caused rapid oxidation of NAD(P)H NQO1 could be readily pulled-down. Similarly, immunostaining for NQO1 was significantly increased in cells following treatment with β-lapachone demonstrating that under non-denaturing conditions the immunoreactivity of NQO1 is reflective of the NAD(P)+/NAD(P)H ratio. In untreated human cells, regions with high intensity immunostaining for NQO1 co-localize with acetyl α-tubulin and the NAD+-dependent deacetylase Sirt2 on the centrosome(s), the mitotic spindle and midbody during cell division. These data provide evidence that during the centriole duplication cycle NQO1 may provide NAD+ for Sirt2-mediated deacetylation of microtubules. Overall, NQO1 may act as a redox-dependent switch where the protein responds to the NAD(P)+/NAD(P)H redox environment by altering its structure promoting the binding or dissociation of NQO1 with target macromolecules. | 29298345
|
NAD(P)H:quinone oxidoreductase 1 (NQO1) localizes to the mitotic spindle in human cells. Siegel, D; Kepa, JK; Ross, D PLoS One
7
e44861
2012
Show Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is an FAD containing quinone reductase that catalyzes the 2-electron reduction of a broad range of quinones. The 2-electron reduction of quinones to hydroquinones by NQO1 is believed to be a detoxification process since this reaction bypasses the formation of the highly reactive semiquinone. NQO1 is expressed at high levels in normal epithelium, endothelium and adipocytes as well as in many human solid tumors. In addition to its function as a quinone reductase NQO1 has been shown to reduce superoxide and regulate the 20 S proteasomal degradation of proteins including p53. Biochemical studies have indicated that NQO1 is primarily located in the cytosol, however, lower levels of NQO1 have also been found in the nucleus. In these studies we demonstrate using immunocytochemistry and confocal imaging that NQO1 was found associated with mitotic spindles in cells undergoing division. The association of NQO1 with the mitotic spindles was observed in many different human cell lines including nontransformed cells (astrocytes, HUVEC) immortalized cell lines (HBMEC, 16HBE) and cancer (pancreatic adenocarcinoma, BXPC3). Confocal analysis of double-labeling experiments demonstrated co-localization of NQO1with alpha-tubulin in mitotic spindles. In studies with BxPc-3 human pancreatic cancer cells the association of NQO1 with mitotic spindles appeared to be unchanged in the presence of NQO1 inhibitors ES936 or dicoumarol suggesting that NQO1 can associate with the mitotic spindle and still retain catalytic activity. Analysis of archival human squamous lung carcinoma tissue immunostained for NQO1 demonstrated positive staining for NQO1 in the spindles of mitotic cells. The purpose of this study is to demonstrate for the first time the association of the quinone reductase NQO1 with the mitotic spindle in human cells. | 22984577
|
NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. Pink, JJ; Planchon, SM; Tagliarino, C; Varnes, ME; Siegel, D; Boothman, DA J Biol Chem
275
5416-24
2000
Show Abstract
beta-Lapachone activates a novel apoptotic response in a number of cell lines. We demonstrate that the enzyme NAD(P)H:quinone oxidoreductase (NQO1) substantially enhances the toxicity of beta-lapachone. NQO1 expression directly correlated with sensitivity to a 4-h pulse of beta-lapachone in a panel of breast cancer cell lines, and the NQO1 inhibitor, dicoumarol, significantly protected NQO1-expressing cells from all aspects of beta-lapachone toxicity. Stable transfection of the NQO1-deficient cell line, MDA-MB-468, with an NQO1 expression plasmid increased apoptotic responses and lethality after beta-lapachone exposure. Dicoumarol blocked both the apoptotic responses and lethality. Biochemical studies suggest that reduction of beta-lapachone by NQO1 leads to a futile cycling between the quinone and hydroquinone forms, with a concomitant loss of reduced NAD(P)H. In addition, the activation of a cysteine protease, which has characteristics consistent with the neutral calcium-dependent protease, calpain, is observed after beta-lapachone treatment. This is the first definitive elucidation of an intracellular target for beta-lapachone in tumor cells. NQO1 could be exploited for gene therapy, radiotherapy, and/or chemopreventive interventions, since the enzyme is elevated in a number of tumor types (i.e. breast and lung) and during neoplastic transformation. | 10681517
|