Predictive Potential of Twenty-Two Biochemical Biomarkers for Coronary Artery Disease in Type 2 Diabetes Mellitus. Pereira, EC; Bertolami, MC; Faludi, AA; Monte, O; Xavier, HT; Pereira, TV; Abdalla, DS International journal of endocrinology
2015
146816
2015
Show Abstract
We investigated the potential of a panel of 22 biomarkers to predict the presence of coronary artery disease (CAD) in type 2 diabetes mellitus (DM2) patients. The study enrolled 96 DM2 patients with (n = 75) and without (n = 21) evidence of CAD. We assessed a biochemical profile that included 22 biomarkers: total cholesterol, LDL, HDL, LDL/HDL, triglycerides, glucose, glycated hemoglobin, fructosamine, homocysteine, cysteine, methionine, reduced glutathione, oxidized glutathione, reduced glutathione/oxidized glutathione, L-arginine, asymmetric dimethyl-L-arginine, symmetric dimethyl-L-arginine, asymmetric dimethyl-L-arginine/L-arginine, nitrate plus nitrite, S-nitrosothiols, nitrotyrosine, and n-acetyl-β-glucosaminidase. Prediction models were built using logistic regression models. We found that eight biomarkers (methionine, nitratate plus nitrite, n-acetyl-β-glucosaminidase, BMI, LDL, HDL, reduced glutathione, and L-arginine/asymmetric dimethyl-L-arginine) along with gender and BMI were significantly associated with the odds of CAD in DM2. These preliminary findings support the notion that emerging biochemical markers might be used for CAD prediction in patients with DM2. Our findings warrant further investigation with large, well-designed studies. | | | 26089875
|
Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice. Kim, JW; Ku, SK; Kim, KY; Kim, SG; Han, MH; Kim, GY; Hwang, HJ; Kim, BW; Kim, CM; Choi, YH Oxidative medicine and cellular longevity
2015
872428
2015
Show Abstract
The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation. | | | 26064425
|
Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse. Bricker-Anthony, C; Rex, TS PloS one
10
e0131921
2015
Show Abstract
Damage to the eye from blast exposure can occur as a result of the overpressure air-wave (primary injury), flying debris (secondary injury), blunt force trauma (tertiary injury), and/or chemical/thermal burns (quaternary injury). In this study, we investigated damage in the contralateral eye after a blast directed at the ipsilateral eye in the C57Bl/6J and DBA/2J mouse. Assessments of ocular health (gross pathology, electroretinogram recordings, optokinetic tracking, optical coherence tomography and histology) were performed at 3, 7, 14 and 28 days post-trauma. Olfactory epithelium and optic nerves were also examined. Anterior pathologies were more common in the DBA/2J than in the C57Bl/6 and could be prevented with non-medicated viscous eye drops. Visual acuity decreased over time in both strains, but was more rapid and severe in the DBA/2J. Retinal cell death was present in approximately 10% of the retina at 7 and 28 days post-blast in both strains. Approximately 60% of the cell death occurred in photoreceptors. Increased oxidative stress and microglial reactivity was detected in both strains, beginning at 3 days post-injury. However, there was no sign of injury to the olfactory epithelium or optic nerve in either strain. Although our model directs an overpressure air-wave at the left eye in a restrained and otherwise protected mouse, retinal damage was detected in the contralateral eye. The lack of damage to the olfactory epithelium and optic nerve, as well as the different timing of cell death as compared to the blast-exposed eye, suggests that the injuries were due to physical contact between the contralateral eye and the housing chamber of the blast device and not propagation of the blast wave through the head. Thus we describe a model of mild blunt eye trauma. | | | 26148200
|
Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Tapias, V; Cannon, JR; Greenamyre, JT Neurobiology of aging
35
1162-76
2014
Show Abstract
Numerous factors contribute to the death of substantia nigra (SN) dopamine (DA) neurons in Parkinson's disease (PD). Compelling evidence implicates mitochondrial deficiency, oxidative stress, and inflammation as important pathogenic factors in PD. Chronic exposure of rats to rotenone causes a PD-like syndrome, in part by causing oxidative damage and inflammation in substantia nigra. Pomegranate juice (PJ) has the greatest composite antioxidant potency index among beverages, and it has been demonstrated to have protective effects in a transgenic model of Alzheimer's disease. The present study was designed to examine the potential neuroprotective effects of PJ in the rotenone model of PD. Oral administration of PJ did not mitigate or prevent experimental PD but instead increased nigrostriatal terminal depletion, DA neuron loss, the inflammatory response, and caspase activation, thereby heightening neurodegeneration. The mechanisms underlying this effect are uncertain, but the finding that PJ per se enhanced nitrotyrosine, inducible nitric oxide synthase, and activated caspase-3 expression in nigral DA neurons is consistent with its potential pro-oxidant activity. | | | 24315037
|
Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase. Takayanagi, T; Crawford, KJ; Kobayashi, T; Obama, T; Tsuji, T; Elliott, KJ; Hashimoto, T; Rizzo, V; Eguchi, S Clinical science (London, England : 1979)
126
785-94
2014
Show Abstract
Although AngII (angiotensin II) and its receptor AT1R (AngII type 1 receptor) have been implicated in AAA (abdominal aortic aneurysm) formation, the proximal signalling events primarily responsible for AAA formation remain uncertain. Caveolae are cholesterol-rich membrane microdomains that serve as a signalling platform to facilitate the temporal and spatial localization of signal transduction events, including those stimulated by AngII. Cav1 (caveolin 1)-enriched caveolae in vascular smooth muscle cells mediate ADAM17 (a disintegrin and metalloproteinase 17)-dependent EGFR (epidermal growth factor receptor) transactivation, which is linked to vascular remodelling induced by AngII. In the present study, we have tested our hypothesis that Cav1 plays a critical role for the development of AAA at least in part via its specific alteration of AngII signalling within caveolae. Cav1-/- mice and the control wild-type mice were co-infused with AngII and β-aminopropionitrile to induce AAA. We found that Cav1-/- mice with the co-infusion did not develop AAA compared with control mice in spite of hypertension. We found an increased expression of ADAM17 and enhanced phosphorylation of EGFR in AAA. These events were markedly attenuated in Cav1-/- aortas with the co-infusion. Furthermore, aortas from Cav1-/- mice with the co-infusion showed less endoplasmic reticulum stress, oxidative stress and inflammatory responses compared with aortas from control mice. Cav1 silencing in cultured vascular smooth muscle cells prevented AngII-induced ADAM17 induction and activation. In conclusion, Cav1 appears to play a critical role in the formation of AAA and associated endoplasmic reticulum/oxidative stress, presumably through the regulation of caveolae compartmentalized signals induced by AngII. | | | 24329494
|
Quercetin reduces oxidative stress and inhibits activation of c‑Jun N‑terminal kinase/activator protein‑1 signaling in an experimental mouse model of abdominal aortic aneurysm. Wang, L; Cheng, X; Li, H; Qiu, F; Yang, N; Wang, B; Lu, H; Wu, H; Shen, Y; Wang, Y; Jing, H Molecular medicine reports
9
435-42
2014
Show Abstract
Oxidative stress is becoming increasingly linked to the pathogenesis of abdominal aortic aneurysms (AAAs). The antioxidant activity of flavonoids has attracted attention for their possible role in the prevention of cardiovascular diseases. The purpose of this study was to determine whether an antioxidant mechanism is involved in the aneurysm formation inhibitory effect afforded by quercetin. Male C57/BL6 mice received quercetin continuously from 2 weeks prior to and 6 weeks following the AAA induction with extraluminal CaCl2. Quercetin treatment decreased AAA incidence and inhibited the reactive oxygen species generation, nitrotyrosine formation and lipid peroxidation production in the aortic tissue during AAA development. In addition, quercetin‑treated mice exhibited significantly lower expression of the p47phox subunit of nicotinamide adenine dinucleotide phosphate oxidase and inducible nitric oxide synthase, as well as coordinated downregulation of manganese‑superoxide dismutase activities and glutathione peroxidase (GPx)‑1 and GPx‑3 expression. Quercetin also blunted the expression of c‑Jun N‑terminal kinase (JNK) and phospho‑JNK and, in addition, diminished activation of the activator protein (AP)‑1 transcription factor. Gelatin zymography showed that quercetin eliminated matrix metalloproteinase (MMP)‑2 and MMP‑9 activation during AAA formation. In conclusion, the inhibitory effects of quercetin on oxidative stress and MMP activation, through modulation of JNK/AP‑1 signaling, may partly account for its benefit in CaCl2‑induced AAA. | | | 24337353
|
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is selectively toxic to primary dopaminergic neurons in vitro. Griggs, AM; Agim, ZS; Mishra, VR; Tambe, MA; Director-Myska, AE; Turteltaub, KW; McCabe, GP; Rochet, JC; Cannon, JR Toxicological sciences : an official journal of the Society of Toxicology
140
179-89
2014
Show Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4'-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4'-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. | | | 24718704
|
Transauricular balloon angioplasty in rabbit thoracic aorta: a novel model of experimental restenosis. Koniari, I; Apostolakis, E; Diamantopoulos, A; Papadaki, H; Papadimitriou, E; Poimenidi, E; Karnabatidis, D; Karahaliou, A; Costaridou, L; Papalois, A; Siablis, D; Dougenis, D; Alexopoulos, D Lipids in health and disease
13
33
2014
Show Abstract
The aim of this study was to demonstrate a percutaneous transauricular method of balloon angioplasty in high-cholesterol fed rabbits, as an innovative atherosclerosis model.Twenty male New Zealand rabbits were randomly divided into two groups of ten animals, as follows: atherogenic diet plus balloon angioplasty (group A) and atherogenic diet alone (group B). Balloon angioplasty was performed in the descending thoracic aorta through percutaneous catheterization of the auricular artery. Eight additional animals fed regular diet were served as long term control. At the end of 9 week period, rabbits were euthanized and thoracic aortas were isolated for histological, immunohistochemical and biochemical analysis.Atherogenic diet induced severe hypercholesterolemia in both group A and B (2802 ± 188.59 and 4423 ± 493.39 mg/dl respectively) compared to the control animals (55.5 ± 11.82 mg/dl; P less than 0.001). Group A atherosclerotic lesions appeared to be more advanced histologically (20% type IV and 80% type V) compared to group B lesions (50% type III and 50% type IV). Group A compared to group B atherosclerotic lesions demonstrated similar percentage of macrophages (79.5 ± 9.56% versus 84 ± 12.2%; P = 0.869), more smooth muscle cells (61 ± 14.10% versus 40.5 ± 17.07; P = 0.027), increased intima/media ratio (1.20 ± 0.50 versus 0.62 ± 0.13; P = 0.015) despite the similar degree of intimal hyperplasia (9768 ± 1826.79 μm² versus 12205 ± 8789.23 μm²; P = 0.796), and further significant lumen deterioration (23722 ± 4508.11 versus 41967 ± 20344.61 μm²; P = 0.05) and total vessel area reduction (42350 ± 5819.70 versus 73190 ± 38902.79 μm²; P = 0.022). Group A and B animals revealed similar nitrated protein percentage (P = NS), but significantly higher protein nitration compared to control group (P less than 0.01; P less than 0.01, respectively). No deaths or systemic complications were reported.Transauricular balloon angioplasty constitutes a safe, minimally invasive and highly successful model of induced atherosclerosis in hyperlipidaemic rabbits. | Western Blotting | | 24529182
|
In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice. Weldy, CS; Liu, Y; Liggitt, HD; Chin, MT PloS one
9
e88582
2014
Show Abstract
Exposure to fine particulate air pollution (PM₂.₅) is strongly associated with cardiovascular morbidity and mortality. Exposure to PM₂.₅ during pregnancy promotes reduced birthweight, and the associated adverse intrauterine conditions may also promote adult risk of cardiovascular disease. Here, we investigated the potential for in utero exposure to diesel exhaust (DE) air pollution, a major source of urban PM₂.₅, to promote adverse intrauterine conditions and influence adult susceptibility to disease. We exposed pregnant female C57Bl/6J mice to DE (≈300 µg/m³ PM₂.₅, 6 hrs/day, 5 days/week) from embryonic day (E) 0.5 to 17.5. At E17.5 embryos were collected for gravimetric analysis and assessed for evidence of resorption. Placental tissues underwent pathological examination to assess the extent of injury, inflammatory cell infiltration, and oxidative stress. In addition, some dams that were exposed to DE were allowed to give birth to pups and raise offspring in filtered air (FA) conditions. At 10-weeks of age, body weight and blood pressure were measured. At 12-weeks of age, cardiac function was assessed by echocardiography. Susceptibility to pressure overload-induced heart failure was then determined after transverse aortic constriction surgery. We found that in utero exposure to DE increases embryo resorption, and promotes placental hemorrhage, focal necrosis, compaction of labyrinth vascular spaces, inflammatory cell infiltration and oxidative stress. In addition, we observed that in utero DE exposure increased body weight, but counterintuitively reduced blood pressure without any changes in baseline cardiac function in adult male mice. Importantly, we observed these mice to have increased susceptibility to pressure-overload induced heart failure, suggesting this in utero exposure to DE 'reprograms' the heart to a heightened susceptibility to failure. These observations provide important data to suggest that developmental exposure to air pollution may strongly influence adult susceptibility to cardiovascular disease. | | | 24533117
|
Prenatal vitamin C deficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains. Paidi, MD; Schjoldager, JG; Lykkesfeldt, J; Tveden-Nyborg, P Redox biology
2
361-7
2014
Show Abstract
Antioxidant defences are comparatively low during foetal development making the brain particularly susceptible to oxidative stress during antioxidant deficiencies. The brain is one of the organs containing the highest concentration of vitamin C (VitC) and VitC deficiency during foetal development may place the brain at risk of redox status imbalance. In the present study, we investigated the developmental pattern and effect of VitC deficiency on antioxidants, vitamin E and superoxide dismutase (SOD), assessed oxidative damage by measuring malondialdehyde (MDA), hydroxynonenal (HNE) and nitrotyrosine (NT) and analysed gene and protein expression of apoptosis marker caspase-3 in the guinea pig foetal brain at two gestational (GD) time points, GD 45/pre-term and GD 56/near term following either a VitC sufficient (CTRL) or deficient (DEF) maternal dietary regime. We show that except for SOD, antioxidants and oxidative damage markers are differentially expressed between the two GDs, with high VitC (pless than 0.0001), NT modified proteins (pless than 0.0001) and active caspase-3 levels (pless than 0.05) at pre-term and high vitamin E levels (pless than 0.0001), HNE (pless than 0.0001) and MDA (pless than 0.0001) at near term. VitC deficiency significantly increased SOD activity (pless than 0.0001) compared to CTRLs at both GDs indicating a compensatory response, however, low levels of VitC significantly elevated MDA levels (pless than 0.05) in DEF at near term. Our results show a differential regulation of the investigated markers during late gestation and suggest that immature brains are susceptible to oxidative stress due to prenatal vitC deficiency in spite of an induction of protective adaptation mechanisms. | | | 24563854
|