Effects of Nitric Oxide Synthase Inhibition on Fiber-Type Composition, Mitochondrial Biogenesis, and SIRT1 Expression in Rat Skeletal Muscle. Suwa, M; Nakano, H; Radak, Z; Kumagai, S Journal of sports science & medicine
14
548-55
2015
Show Abstract
It was hypothesized that nitric oxide synthases (NOS) regulated SIRT1 expression and lead to a corresponding changes of contractile and metabolic properties in skeletal muscle. The purpose of the present study was to investigate the influence of long-term inhibition of nitric oxide synthases (NOS) on the fiber-type composition, metabolic regulators such as and silent information regulator of transcription 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and components of mitochondrial biogenesis in the soleus and plantaris muscles of rats. Rats were assigned to two groups: control and NOS inhibitor (N (ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME), ingested for 8 weeks in drinking water)-treated groups. The percentage of Type I fibers in the L-NAME group was significantly lower than that in the control group, and the percentage of Type IIA fibers was concomitantly higher in soleus muscle. In plantaris muscle, muscle fiber composition was not altered by L-NAME treatment. L-NAME treatment decreased the cytochrome C protein expression and activity of mitochondrial oxidative enzymes in the plantaris muscle but not in soleus muscle. NOS inhibition reduced the SIRT1 protein expression level in both the soleus and plantaris muscles, whereas it did not affect the PGC-1α protein expression. L-NAME treatment also reduced the glucose transporter 4 protein expression in both muscles. These results suggest that NOS plays a role in maintaining SIRT1 protein expression, muscle fiber composition and components of mitochondrial biogenesis in skeletal muscle. Key pointsNOS inhibition by L-NAME treatment decreased the SIRT1 protein expression in skeletal muscle.NOS inhibition induced the Type I to Type IIA fiber type transformation in soleus muscle.NOS inhibition reduced the components of mitochondrial biogenesis and glucose metabolism in skeletal muscle. | | | 26336341
|
Sirt1-deficiency causes defective protein quality control. Tomita, T; Hamazaki, J; Hirayama, S; McBurney, MW; Yashiroda, H; Murata, S Scientific reports
5
12613
2015
Show Abstract
Protein quality control is an important mechanism to maintain cellular homeostasis. Damaged proteins have to be restored or eliminated by degradation, which is mainly achieved by molecular chaperones and the ubiquitin-proteasome system. The NAD(+)-dependent deacetylase Sirt1 has been reported to play positive roles in the regulation of cellular homeostasis in response to various stresses. However, its contribution to protein quality control remains unexplored. Here we show that Sirt1 is involved in protein quality control in both an Hsp70-dependent and an Hsp70-independent manner. Loss of Sirt1 led to the accumulation of ubiquitinated proteins in cells and tissues, especially upon heat stress, without affecting proteasome activities. This was partly due to decreased basal expression of Hsp70. However, this accumulation was only partially alleviated by overexpression of Hsp70 or induction of Hsp70 upon heat shock in Sirt1-deficient cells and tissues. These results suggest that Sirt1 mediates both Hsp70-dependent and Hsp70-independent protein quality control. Our findings cast new light on understanding the role of Sirt1 in maintaining cellular homeostasis. | | | 26219988
|
The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. Gurt, I; Artsi, H; Cohen-Kfir, E; Hamdani, G; Ben-Shalom, G; Feinstein, B; El-Haj, M; Dresner-Pollak, R PloS one
10
e0134391
2015
Show Abstract
Increased osteoclast-mediated bone resorption is characteristic of osteoporosis, malignant bone disease and inflammatory arthritis. Targeted deletion of Sirtuin1 (Sirt1), a key player in aging and metabolism, in osteoclasts results in increased osteoclast-mediated bone resorption in vivo, making it a potential novel therapeutic target to block bone resorption. Sirt1 activating compounds (STACs) were generated and were investigated in animal disease models and in humans however their mechanism of action was a source of controversy. We studied the effect of SRT2183 and SRT3025 on osteoclastogenesis in bone-marrow derived macrophages (BMMs) in vitro, and discovered that these STACs inhibit RANKL-induced osteoclast differentiation, fusion and resorptive capacity without affecting osteoclast survival. SRT2183 and SRT3025 activated AMPK, increased Sirt1 expression and decreased RelA/p65 lysine310 acetylation, critical for NF-κB activation, and an established Sirt1 target. However, inhibition of osteoclastogenesis by these STACs was also observed in BMMs derived from sirt1 knock out (sirt1-/-) mice lacking the Sirt1 protein, in which neither AMPK nor RelA/p65 lysine 310 acetylation was affected, confirming that these effects require Sirt1, but suggesting that Sirt1 is not essential for inhibition of osteoclastogenesis by these STACs under these conditions. In sirt1 null osteoclasts treated with SRT2183 or SRT3025 Sirt3 was found to be down-regulated. Our findings suggest that SRT2183 and SRT3025 activate Sirt1 and inhibit RANKL-induced osteoclastogenesis in vitro however under conditions of Sirt1 deficiency can affect Sirt3. As aging is associated with reduced Sirt1 level and activity, the influence of STACs on Sirt3 needs to be investigated in vivo in animal and human disease models of aging and osteoporosis. | | | 26226624
|
Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation. Pantazi, E; Bejaoui, M; Zaouali, MA; Folch-Puy, E; Pinto Rolo, A; Panisello, A; Palmeira, CM; Roselló-Catafau, J World journal of gastroenterology
21
8021-31
2015
Show Abstract
To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats.Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4 °C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD(+), a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined.The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 ± 133.44 vs 206 ± 33.61, P less than 0.05) and aspartate aminotransferase levels (893.57 ± 397.69 vs 500.85 ± 118.07, P less than 0.05). The lessened hepatic injury in case of losartan was associated with enhanced SIRT1 protein expression and activity (5.27 ± 0.32 vs 6.08 ± 0.30, P less than 0.05). This was concomitant with increased levels of NAD(+) (0.87 ± 0.22 vs 1.195 ± 0.144, P less than 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration.The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model. | Western Blotting | | 26185373
|
Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Marton, O; Koltai, E; Takeda, M; Koch, LG; Britton, SL; Davies, KJ; Boldogh, I; Radak, Z Pflügers Archiv : European journal of physiology
467
779-88
2015
Show Abstract
Trainability is important in elite sport and in recreational physical activity, and the wide range for response to training is largely dependent on genotype. In this study, we compare a newly developed rat model system selectively bred for low and high gain in running distance from aerobic training to test whether genetic segregation for trainability associates with differences in factors associated with mitochondrial biogenesis. Low response trainer (LRT) and high response trainer (HRT) rats from generation 11 of artificial selection were trained five times a week, 30 min per day for 3 months at 70 % VO2max to study the mitochondrial molecular background of trainability. As expected, we found significant differential for the gain in running distance between LRT and HRT groups as a result of training. However, the changes in VO2max, COX-4, redox homeostasis associated markers (reactive oxygen species (ROS)), silent mating-type information regulation 2 homolog (SIRT1), NAD(+)/NADH ratio, proteasome (R2 subunit), and mitochondrial network related proteins such as mitochondrial fission protein 1 (Fis1) and mitochondrial fusion protein (Mfn1) suggest that these markers are not strongly involved in the differences in trainability between LRT and HRT. On the other hand, according to our results, we discovered that differences in basal activity of AMP-activated protein kinase alpha (AMPKα) and differential changes in aerobic exercise-induced responses of citrate synthase, carbonylated protein, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1-α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), and Lon protease limit trainability between these selected lines. From this, we conclude that mitochondrial biogenesis-associated factors adapt differently to aerobic exercise training in training sensitive and training resistant rats. | Western Blotting | | 24943897
|
Sirtuin 1 in rat orthotopic liver transplantation: an IGL-1 preservation solution approach. Pantazi, E; Zaouali, MA; Bejaoui, M; Folch-Puy, E; Ben Abdennebi, H; Varela, AT; Rolo, AP; Palmeira, CM; Roselló-Catafau, J World journal of gastroenterology
21
1765-74
2015
Show Abstract
To investigate the possible involvement of Sirtuin 1 (SIRT1) in rat orthotopic liver transplantation (OLT), when Institute Georges Lopez 1 (IGL-1) preservation solution is enriched with trimetazidine (TMZ).Male Sprague-Dawley rats were used as donors and recipients. Livers were stored in IGL-1 preservation solution for 8h at 4 °C, and then underwent OLT according to Kamada's cuff technique without arterialization. In another group, livers were stored in IGL-1 preservation solution supplemented with TMZ, at 10(-6) mol/L, for 8 h at 4 °C and then underwent OLT. Rats were sacrificed 24 h after reperfusion, and liver and plasma samples were collected. Liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity) oxidative stress (malondialdehyde levels), and nicotinamide adenine dinucleotide (NAD(+)), the co-factor necessary for SIRT1 activity, were determined by biochemical methods. SIRT1 and its substrates (ac-FoxO1, ac-p53), the precursor of NAD(+), nicotinamide phosphoribosyltransferase (NAMPT), as well as the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), p-mTOR, p-p70S6K (direct substrate of mTOR), autophagy parameters (beclin-1, LC3B) and MAP kinases (p-p38 and p-ERK) were determined by Western blot.Liver grafts preserved in IGL-1 solution enriched with TMZ presented reduced liver injury and mitochondrial damage compared with those preserved in IGL-1 solution alone. In addition, livers preserved in IGL-1 + TMZ presented reduced levels of oxidative stress. This was consistent with enhanced SIRT1 protein expression and elevated SIRT1 activity, as indicated by decreased acetylation of p53 and FoxO1. The elevated SIRT1 activity in presence of TMZ can be attributed to the enhanced NAMPT protein and NAD(+)/NADH levels. Up-regulation of SIRT1 was consistent with activation of AMPK and inhibition of phosphorylation of mTOR and its direct substrate (p-p70S6K). As a consequence, autophagy mediators (beclin-1 and LC3B) were over-expressed. Furthermore, MAP kinases were regulated in livers preserved with IGL-1 + TMZ, as they were characterized by enhanced p-ERK and decreased p-p38 protein expression.Our study shows that IGL-1 preservation solution enriched with TMZ protects liver grafts from the IRI associated with OLT, through SIRT1 up-regulation. | | | 25684941
|
AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Brandauer, J; Andersen, MA; Kellezi, H; Risis, S; Frøsig, C; Vienberg, SG; Treebak, JT Frontiers in physiology
6
85
2015
Show Abstract
The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p less than 0.01) and superoxide dismutase 2 (MnSOD; p less than 0.05) protein abundance in quadriceps muscle of wild-type (WT; n = 13-15), but not AMPK α2 kinase dead (KD; n = 12-13) mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these effects, we treated WT (n = 7-8) and AMPK α2 KD (n = 7-9) mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily AICAR injections (500 mg/kg) resulted in AMPK-dependent increases in SIRT3 (p less than 0.05) and MnSOD (p less than 0.01) in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n = 9-10). Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p less than 0.01) and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p less than 0.05). Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training. | | | 25852572
|
Cooperative Action of Cdk1/cyclin B and SIRT1 Is Required for Mitotic Repression of rRNA Synthesis. Voit, R; Seiler, J; Grummt, I PLoS genetics
11
e1005246
2015
Show Abstract
Mitotic repression of rRNA synthesis requires inactivation of the RNA polymerase I (Pol I)-specific transcription factor SL1 by Cdk1/cyclin B-dependent phosphorylation of TAF(I)110 (TBP-associated factor 110) at a single threonine residue (T852). Upon exit from mitosis, T852 is dephosphorylated by Cdc14B, which is sequestered in nucleoli during interphase and is activated upon release from nucleoli at prometaphase. Mitotic repression of Pol I transcription correlates with transient nucleolar enrichment of the NAD(+)-dependent deacetylase SIRT1, which deacetylates another subunit of SL1, TAFI68. Hypoacetylation of TAFI68 destabilizes SL1 binding to the rDNA promoter, thereby impairing transcription complex assembly. Inhibition of SIRT1 activity alleviates mitotic repression of Pol I transcription if phosphorylation of TAF(I)110 is prevented. The results demonstrate that reversible phosphorylation of TAF(I)110 and acetylation of TAFI68 are key modifications that regulate SL1 activity and mediate fluctuations of pre-rRNA synthesis during cell cycle progression. | | | 26023773
|
SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Malik, S; Villanova, L; Tanaka, S; Aonuma, M; Roy, N; Berber, E; Pollack, JR; Michishita-Kioi, E; Chua, KF Scientific reports
5
9841
2015
Show Abstract
Metastasis is responsible for over 90% of cancer-associated mortality. In epithelial carcinomas, a key process in metastatic progression is the epigenetic reprogramming of an epithelial-to-mesenchymal transition-like (EMT) change towards invasive cellular phenotypes. In non-epithelial cancers, different mechanisms must underlie metastatic change, but relatively little is known about the factors involved. Here, we identify the chromatin regulatory Sirtuin factor SIRT7 as a key regulator of metastatic phenotypes in both epithelial and mesenchymal cancer cells. In epithelial prostate carcinomas, high SIRT7 levels are associated with aggressive cancer phenotypes, metastatic disease, and poor patient prognosis, and depletion of SIRT7 can reprogram these cells to a less aggressive phenotype. Interestingly, SIRT7 is also important for maintaining the invasiveness and metastatic potential of non-epithelial sarcoma cells. Moreover, SIRT7 inactivation dramatically suppresses cancer cell metastasis in vivo, independent of changes in primary tumor growth. Mechanistically, we also uncover a novel link between SIRT7 and its family member SIRT1, providing the first demonstration of direct interaction and functional interplay between two mammalian sirtuins. Together with previous work, our findings highlight the broad role of SIRT7 in maintaining the metastatic cellular phenotype in diverse cancers. | | | 25923013
|
A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation. Tomita, S; Abdalla, MO; Fujiwara, S; Matsumori, H; Maehara, K; Ohkawa, Y; Iwase, H; Saitoh, N; Nakao, M Nature communications
6
6966
2015
Show Abstract
Estrogen receptor-α (ER)-positive breast cancer cells undergo hormone-independent proliferation after deprivation of oestrogen, leading to endocrine therapy resistance. Up-regulation of the ER gene (ESR1) is critical for this process, but the underlying mechanisms remain unclear. Here we show that the combination of transcriptome and fluorescence in situ hybridization analyses revealed that oestrogen deprivation induced a cluster of noncoding RNAs that defined a large chromatin domain containing the ESR1 locus. We termed these RNAs as Eleanors (ESR1 locus enhancing and activating noncoding RNAs). Eleanors were present in ER-positive breast cancer tissues and localized at the transcriptionally active ESR1 locus to form RNA foci. Depletion of one Eleanor, upstream (u)-Eleanor, impaired cell growth and transcription of intragenic Eleanors and ESR1 mRNA, indicating that Eleanors cis-activate the ESR1 gene. Eleanor-mediated gene activation represents a new type of locus control mechanism and plays an essential role in the adaptation of breast cancer cells. | | | 25923108
|