In vivo generation of a mature and functional artificial skeletal muscle. Fuoco, C; Rizzi, R; Biondo, A; Longa, E; Mascaro, A; Shapira-Schweitzer, K; Kossovar, O; Benedetti, S; Salvatori, ML; Santoleri, S; Testa, S; Bernardini, S; Bottinelli, R; Bearzi, C; Cannata, SM; Seliktar, D; Cossu, G; Gargioli, C EMBO molecular medicine
7
411-22
2015
Show Abstract
Extensive loss of skeletal muscle tissue results in mutilations and severe loss of function. In vitro-generated artificial muscles undergo necrosis when transplanted in vivo before host angiogenesis may provide oxygen for fibre survival. Here, we report a novel strategy based upon the use of mouse or human mesoangioblasts encapsulated inside PEG-fibrinogen hydrogel. Once engineered to express placental-derived growth factor, mesoangioblasts attract host vessels and nerves, contributing to in vivo survival and maturation of newly formed myofibres. When the graft was implanted underneath the skin on the surface of the tibialis anterior, mature and aligned myofibres formed within several weeks as a complete and functional extra muscle. Moreover, replacing the ablated tibialis anterior with PEG-fibrinogen-embedded mesoangioblasts also resulted in an artificial muscle very similar to a normal tibialis anterior. This strategy opens the possibility for patient-specific muscle creation for a large number of pathological conditions involving muscle tissue wasting. | 25715804
|
Tropomyosin isoforms and reagents Galina Schevzov 1 , Shane P Whittaker, Thomas Fath, Jim Jc Lin, Peter W Gunning Bioarchitecture
1(4)
135-164
2011
Show Abstract
Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike. | 22069507
|
Cytoplasmic gamma-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. Gokhin, DS; Fowler, VM The Journal of cell biology
194
105-20
2011
Show Abstract
The sarcoplasmic reticulum (SR) serves as the Ca(2+) reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γ(cyto)-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γ(cyto)-actin and Tmod3 defined an SR microdomain that was distinct from another Z line-flanking SR microdomain containing Tmod1 and Tmod4. The γ(cyto)-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γ(cyto)-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3-γ(cyto)-actin-sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca(2+) release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γ(cyto)-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils. Full Text Article | 21727195
|
Cytoskeletal remodelling proteins identified in fetal-maternal interface in pregnant women and rhesus monkeys. Sarah Paule,Ying Li,Guiying Nie Journal of molecular histology
42
2011
Show Abstract
The uterus undergoes dramatic remodelling in preparation for embryo implantation and pregnancy establishment. A receptive uterus is pivotal for embryo attachment, implantation and the eventual formation of a hemochorial placenta. We have previously identified by proteomics that tropomyosin alpha-4 chain (TPM4), protein disulfide isomerase A1 (PDIA1) and src substrate cortactin 8 (SRC8) were up regulated in the decidualized stromal cells during the late secretory phase of the menstrual cycle in women. These three proteins are associated with cytoskeletal remodelling. This study determined the localization of these three cytoskeletal proteins in the fetal-maternal interface including the decidual cells in the 1st trimester of pregnancy in women and rhesus monkeys. Immunohistochemical analysis revealed that TPM4, PDIA1 and SRC8 were all expressed by the decidual cells and the wall of the spiral arterioles in pregnant women. Similar expression pattern were also found in the rhesus monkey. In addition, TPM4, PDIA and SRC8 were also localized to the trophoblast cells, further highlighting the importance of these cytoskeletal remodelling proteins in early pregnancy. | 21373848
|
Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation-contraction coupling in skeletal muscle. Vlahovich, Nicole, et al. Mol. Biol. Cell, 20: 400-9 (2009)
2009
Show Abstract
The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation-contraction coupling in skeletal muscle. | 19005216
|
Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle. Vlahovich, Nicole, et al. Cell Motil. Cytoskeleton, 65: 73-85 (2008)
2008
Show Abstract
The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle. | 17968984
|
Detection of protein alterations in male breast cancer using two dimensional gel electrophoresis and mass spectrometry: the involvement of several pathways in tumorigenesis. Karim Chahed, Maria Kabbage, Bechr Hamrita, Christelle Lemaitre Guillier, Mounir Trimeche, Sami Remadi, Laurence Ehret-Sabatier, Lotfi Chouchane Clinica chimica acta; international journal of clinical chemistry
388
106-14
2008
Show Abstract
BACKGROUND: Little emphasis has been placed today on the elucidation of protein alterations in male breast carcinogenesis. METHODS: Protein extracts were subjected to both isoelectric focusing (IEF) and non-equilibrium pH gradient electrophoretic (NEPHGE) analyses. Differentially expressed proteins in tumor tissues were identified by matrix assisted laser desorption /ionization time of flight (MALDI-TOF) mass spectrometry and database search. RESULTS: Some of the alterations involve variations in the expression of cytokeratins 8, 18 and 19. More interestingly, tropomyosin1, a protein known to play a role in suppression of the malignant phenotype, was found to be under-expressed in cancer tissues, implicating a possible pivotal role for this protein in male breast carcinogenesis. Co-upregulation of molecular chaperones (heat shock protein HSP27 and protein disulfide isomerase), stress related proteins (peroxiredoxin 1 and peptidylprolyl isomerase A) and glycolytic enzymes (enolase 1) occurred also in male breast tumors. Some of the remaining alterations include proteins involved in invasion and metastasis, such as galectin 1 and cathepsin D. CONCLUSIONS: The present study represents a first proteomic investigation of protein alterations in infiltrating ductal carcinomas (IDCA) of the male breast. A number of protein alterations in tumor tissues have been characterised thus, providing new insights into the molecular mechanisms underlying this disease. | 17996735
|
Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts. McMichael, Brooke K and Lee, Beth S Exp. Cell Res., 314: 564-73 (2008)
2008
Show Abstract
Tropomyosins (Tms) are alpha-helical dimers that bind and stabilize actin microfilaments while regulating their accessibility to other actin-associated proteins. Four genes encode expression of over forty Tms, most of which are expressed in nonmuscle cells. In recent years, it has become clear that individual Tm isoforms may regulate specific actin pools within cells. In this study, we examined how osteoclast function may be regulated by the tropomyosin isoform Tm-4, which we previously showed to be highly localized to podosomes and sealing zones of osteoclasts. RNAi-mediated knockdown of Tm-4, both in RAW264.7- and mouse marrow-derived osteoclasts, resulted in thinning of the actin ring of the sealing zone. Knockdown of Tm-4 also resulted in diminished bone resorptive capacity and altered resorption pit shape. In contrast, osteoclasts overexpressing Tm-4 demonstrated thickened podosomes on glass as well as thickened, aberrant actin structures on bone, and diminished motility and resorptive capacity. These results indicate that Tm-4 plays a role in regulating adhesion structures of osteoclasts, most likely by stabilizing the actin microfilaments present in podosomes and the sealing zone. | 18036591
|
Tissue-specific tropomyosin isoform composition. Schevzov, Galina, et al. J. Histochem. Cytochem., 53: 557-70 (2005)
2005
Show Abstract
Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells (Gunning et al. 1998b). We hypothesized that these distinct intracellular compartments defined by the association of Tm isoforms may allow for independent regulation of microfilament function. Consequently, to understand the molecular mechanisms that give rise to these different microfilaments and their regulation, a cohort of fully characterized isoform-specific Tm antibodies was required. The characterization protocol initially involved testing the specificity of the antibodies on bacterially produced Tm proteins. We then confirmed that these Tm antibodies can be used to probe the expression and subcellular localization of different Tm isoforms by Western blot analysis, immunofluorescence staining of cells in culture, and immunohistochemistry of paraffin wax-embedded mouse tissues. These Tm antibodies, therefore, have the capacity to monitor specific actin filament populations in a range of experimental systems. | 15872049
|
Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Hannan, A J, et al. Mol. Cell. Neurosci., 11: 289-304 (1998)
1998
Show Abstract
The microfilament system is thought to be a crucial cytoskeletal component regulating development and mature function of neurons. The intracellular distribution of the microfilament isoform components, actin and tropomyosin (Tm), in neurons primarily in vivo, has been investigated at both the mRNA and the protein level using isoform specific riboprobes and antibodies. Our in vivo and in vitro studies have identified at least six neuronal compartments based on microfilament isoform mRNA localization: the developing soma, the mature soma, growth cone, developing axon hillock/proximal axon, mature somatodendritic and mature axonal pole soma. Protein localization patterns revealed that the isoforms were frequently distributed over a wider area than their respective mRNAs, suggesting that isoform specific patterns of mRNA targeting may influence, but do not absolutely determine, microfilament isoform location. Tm4 and Tm5 showed identical mRNA targeting in the developing neuron but distinct protein localization patterns. We suggest that in this instance mRNA location may best be viewed as a regulated site of synthesis and assembly, rather than a regulator of protein localization per se. In addition, Tm5 and beta-actin mRNA and protein locations were developmentally regulated, suggesting the possibility that environmental signals modulate targeting of specific mRNAs and their proteins. Thus, developmentally regulated mRNA localization and positional translation may act in concert with protein transport to regulate neuronal microfilament composition and consequently neuronal structure. | 9698395
|