Immunosuppressive drugs affect high-mannose/hybrid N-glycans on human allostimulated leukocytes. Pocheć, E; Bocian, K; Ząbczyńska, M; Korczak-Kowalska, G; Lityńska, A Analytical cellular pathology (Amsterdam)
2015
324980
2015
Show Abstract
N-glycosylation plays an important role in the majority of physiological and pathological processes occurring in the immune system. Alteration of the type and abundance of glycans is an element of lymphocyte differentiation; it is also common in the development of immune-mediated inflammatory diseases. The N-glycosylation process is very sensitive to different environmental agents, among them the pharmacological environment of immunosuppressive drugs. Some results show that high-mannose oligosaccharides have the ability to suppress different stages of the immune response. We evaluated the effects of cyclosporin A (CsA) and rapamycin (Rapa) on high-mannose/hybrid-type glycosylation in human leukocytes activated in a two-way mixed leukocyte reaction (MLR). CsA significantly reduced the number of leukocytes covered by high-mannose/hybrid N-glycans, and the synergistic action of CsA and Rapa led to an increase of these structures on the remaining leukocytes. This is the first study indicating that β1 and β3 integrins bearing high-mannose/hybrid structures are affected by Rapa and CsA. Rapa taken separately and together with CsA changed the expression of β1 and β3 integrins and, by regulating the protein amount, increased the oligomannose/hybrid-type N-glycosylation on the leukocyte surface. We suggest that the changes in the glycosylation profile of leukocytes may promote the development of tolerance in transplantation. | | 26339568
|
Beta1-6 branching of cell surface glycoproteins may contribute to uveal melanoma progression by up-regulating cell motility. Przybyło, M; Pocheć, E; Link-Lenczowski, P; Lityńska, A Molecular vision
14
625-36
2008
Show Abstract
This study investigated the influence of integrin expression as well as the oligosaccharide structure of surface N-glycoproteins on cell behavior of two primary uveal (92-1 and Mel202) and two primary cutaneous (FM55P and IGR-39) melanoma cell lines.Cell adhesion to fibronectin and cell migration on fibronectin (wound healing) were selected as the studied cell behavior parameters. The percentage of cells positive for expression of selected integrins was estimated by flow cytometric analysis. The influence of beta1-6 branched complex-type N-oligosaccharides on wound healing on fibronectin was investigated. Cell surface beta1-6 branched N-oligosaccharides were measured by their specific binding to PHA-L followed by flow cytometry, and the fibronectin receptors bearing beta1-6 GlcNAc branched N-linked glycans were identified. In addition, the transcript of GnT-V (the enzyme that catalyzes the addition of N-acetylglucosamine to the core mannose of di- and tri-antennary N-glycans through a beta1-6 linkage) was analyzed by semiquantitative RT-PCR.Unlike the two examined cutaneous melanoma cell lines, neither of the uveal melanoma cells adhered to fibronectin. The adhesion efficiency of IGR-39 cells was twice that of FM55P cells. In contrast, uveal melanoma cells repaired scratch wounds on fibronectin-coated surfaces twice as fast as cutaneous melanoma cells did. The expression of alpha(3)beta(1), alpha(4)beta(1), alpha(5)beta(1), and alpha(v)beta(3) integrins, acting as fibronectin receptors, differed between the tested cell lines, and no distinct pattern distinguished uveal melanoma from cutaneous melanoma except for high expression of alpha(4)beta(1) integrin on both FM55P and IGR-39 cells. The results also demonstrated that the high levels of alpha(3)beta(1), alpha(4)beta(1), and alpha(5)beta(1) integrin expression on IGR-39 cells promoted their strong attachment to fibronectin-coated surfaces. In addition, 92-1, Mel202, and FM55P cells showed no or low adhesion to fibronectin, perhaps the result of low expression of fibronectin receptors excluding high expression of alpha(4)beta(1) integrin in FM55P cells. Cell migration was significantly decreased in three out of four PHA-L-treated cell lines, suggesting that beta1-6 branched complex type N-oligosaccharides are critical for 92-1, Mel202, and FM55P cell motility. Semiquantitative RT-PCR analysis showed that the tested cells did not differ in mRNA levels of beta1-6 -N-acetylglucosaminyltransferase V. However, FACS analysis showed that 92-1, Mel202 and IGR-39 cells expressed significantly higher amounts of beta1-6 branched N-oligosaccharides on the cell surface than FM55P cells did. All examined alpha(3), alpha(5), alpha(v), and beta(1) integrin subunits were shown to bear beta1-6 branched N-linked glycans.The role of integrins and their N-glycosylation in the regulation of uveal melanoma growth and progression is largely unknown. These results reveal that cell surface complex-type N-glycans with GlcNAc beta1-6 branches are important factors determining the migration of primary uveal melanoma cells on fibronectin. | Fluorescence Activated Cell Sorting (FACS) | 18385798
|
Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase. Satpathy, M; Cao, L; Pincheira, R; Emerson, R; Bigsby, R; Nakshatri, H; Matei, D Cancer research
67
7194-202
2007
Show Abstract
Tissue transglutaminase (TG2) is involved in Ca(2+)-dependent aggregation and polymerization of proteins. We previously reported that TG2 mRNA is up-regulated in epithelial ovarian cancer (EOC) cells compared with normal ovarian epithelium. Here, we show overexpression of the TG2 protein in ovarian cancer cells and tumors and its secretion in ascites fluid and define its role in EOC. By stable knockdown and overexpression, we show that TG2 enhances EOC cell adhesion to fibronectin and directional cell migration. This phenotype is preserved in vivo, where the pattern of tumor dissemination in the peritoneal space is dependent on TG2 expression levels. TG2 knockdown diminishes dissemination of tumors on the peritoneal surface and mesentery in an i.p. ovarian xenograft model. This phenotype is associated with deficient beta(1) integrin-fibronectin interaction, leading to weaker anchorage of cancer cells to the peritoneal matrix. Highly expressed in ovarian tumors, TG2 facilitates i.p. tumor dissemination by enhancing cell adhesion to the extracellular matrix and modulating beta(1) integrin subunit expression. | | 17671187
|
Integrin shedding as a mechanism of cellular adaptation during cardiac growth. Edie C Goldsmith, Wayne Carver, Alex McFadden, Jack G Goldsmith, Robert L Price, Mark Sussman, Beverly H Lorell, Garth Cooper, Thomas K Borg, Edie C Goldsmith, Wayne Carver, Alex McFadden, Jack G Goldsmith, Robert L Price, Mark Sussman, Beverly H Lorell, Garth Cooper, Thomas K Borg American journal of physiology. Heart and circulatory physiology
284
H2227-34
2003
Show Abstract
Integrin-mediated cell-extracellular matrix (ECM) interactions are essential for multiple cellular processes; however, little is known regarding integrin turnover during these events. Recent studies have demonstrated shedding of cell surface molecules and suggested this as a potential mechanism for integrin turnover. Confocal microscopy of mouse hearts under different physiological conditions demonstrated the presence of beta(1)-integrin-immunoreactive material in the interstitium. Culture media from neonatal rat cardiac myocytes and fibroblasts contained a 55-kDa fragment of beta(1)-integrin. Attachment to ECM components, response to phorbol 12-myristate 13-acetate stimulation, and matrix metalloproteinase inhibition assays demonstrated that fibroblasts responded differently to the fragment compared with myocytes. The beta(1)-integrin fragment stimulated myocyte attachment to collagen and the fragment itself bound a variety of ECM proteins. These studies indicate that as myocytes and fibroblasts change size and shape, cellular contacts with the ECM are altered, resulting in the liberation of a beta(1)-integrin fragment from the cell surface. Integrin shedding may represent a novel mechanism of rapidly modifying cell-ECM contacts during various cellular processes. | | 12573995
|
Monkey rotavirus binding to alpha2beta1 integrin requires the alpha2 I domain and is facilitated by the homologous beta1 subunit. Londrigan, Sarah L, et al. J. Virol., 77: 9486-501 (2003)
2003
Show Abstract
Rotaviruses utilize integrins during virus-cell interactions that lead to infection. Cell binding and infection by simian rotavirus SA11 were inhibited by antibodies (Abs) to the inserted (I) domain of the alpha2 integrin subunit. To determine directly which integrins or other proteins bind rotaviruses, cell surface proteins precipitated by rotaviruses were compared with those precipitated by anti-alpha2beta1 Abs. Two proteins precipitated by SA11 and rhesus rotavirus RRV from MA104 and Caco-2 cells migrated indistinguishably from alpha2beta1 integrin, and SA11 precipitated beta1 from alpha2beta1-transfected CHO cells. These viruses specifically precipitated two MA104 cell proteins only, but an additional 160- to 165-kDa protein was precipitated by SA11 from Caco-2 cells. The role of the alpha2 I domain in rotavirus binding, infection, and growth was examined using CHO cell lines expressing wild-type or mutated human alpha2 or alpha2beta1. Infectious SA11 and RRV, but not human rotavirus Wa, specifically bound CHO cell-expressed human alpha2beta1 and, to a lesser extent, human alpha2 combined with hamster beta1. Binding was inhibited by anti-alpha2 I domain monoclonal Abs (MAbs), but not by non-I domain MAbs to alpha2, and required the presence of the alpha2 I domain. Amino acid residues 151, 221, and 254 in the metal ion-dependent adhesion site of the alpha2 I domain that are necessary for type I collagen binding to alpha2beta1 were not essential for rotavirus binding. Rotavirus-alpha2beta1 binding led to increased virus infection and RRV growth. SA11 and RRV require the alpha2 I domain for binding to alpha2beta1, and their binding to this integrin is distinguishable from that of collagen. | | 12915563
|
Interactions between collagen IV and collagen-binding integrins in renal cell repair after sublethal injury. Nony, P A and Schnellmann, R G Mol. Pharmacol., 60: 1226-34 (2001)
2001
Show Abstract
Recent studies demonstrate that collagen IV selectively promotes the repair of physiological processes in sublethally injured renal proximal tubular cells (RPTC). We sought to further define the mechanisms of cell repair by measuring the effects of toxicant injury and stimulation of repair by L-ascorbic acid-2-phosphate (AscP), exogenous collagen IV, or function-stimulating integrin antibodies on the expression and subcellular localization of collagen-binding integrins (CBI) in RPTC. Expression of CBI subunits alpha1, alpha2, and beta1 in RPTC was not altered on day 1 after sublethal injury by S-(1,2-dichlorovinyl)-L-cysteine (DCVC). On day 6, expression of alpha1 and beta1 subunits remained unchanged, whereas a 2.2-fold increase in alpha2 expression was evident in injured RPTC. CBI localization in control RPTC was limited exclusively to the basal membrane. On day 1 after injury, RPTC exhibited a marked inhibition of active Na(+) transport and a loss of cell polarity characterized by a decrease in basal CBI localization and the appearance of CBI on the apical membrane. On day 6 after injury, RPTC still exhibited marked inhibition of active Na(+) transport and localization of CBI to the apical membrane. However, DCVC-injured RPTC cultured in pharmacological concentrations of AscP (500 microM) or exogenous collagen IV (50 microg/ml) exhibited an increase in active Na(+) transport, relocalization of CBI to the basal membrane, and the disappearance of CBI from the apical membrane on day 6. Function-stimulating antibodies to CBI beta1 did not promote basal relocalization of CBI despite stimulating the repair of Na(+)/K(+)-ATPase activity on day 6 after injury. These data demonstrate that DCVC disrupts integrin localization and that physiological repair stimulated by AscP or collagen IV is associated with the basal relocalization of CBI in DCVC-injured RPTC. These data also suggest that CBI-mediated repair of physiological functions may occur independently of integrin relocalization. | | 11723229
|
Control of beta1 integrin function. Localization of stimulatory epitopes. Wilkins, J A, et al. J. Biol. Chem., 271: 3046-51 (1996)
1996
Show Abstract
The beta1 integrins can be expressed on the surface of cells in a latent form, which is activated by a variety of stimuli. As an approach to examining the transition to an active receptor, a panel of stimulatory antibodies to beta1 were produced and characterized. These antibodies induced adherence of the T-leukemic cell line Jurkat to collagen and fibronectin. Competitive antibody binding assays indicated the existence of at least three distinct epitope clusters A (B3B11, JB1B, 21C8), B (B44, 13B9), and C(N29) defined by the indicated antibodies. Two antibodies to the A site, JB1B and B3B11, were shown to localize to positions 671-703 and 657-670, respectively, of the beta1. This region is located in an area encompassing a predicted disulfide bond between linearly distant cysteines in beta1 (Cys415-Cys671). The homologous region of the beta3 integrin (490 690 and 602 690) has been shown to be one of the sites recognized by stimulatory antibodies to ligand-induced binding sites. The present results indicate the existence of multiple stimulatory regions and suggest considerable homology between the locations of beta1 and beta3 regulatory sites. | | 8621699
|