Expression of the Hippocampal NMDA Receptor GluN1 Subunit and Its Splicing Isoforms in Schizophrenia: Postmortem Study. Vrajová, Monika, et al. Neurochemical research, (2010)
2010
Show Abstract
There is accumulating evidence that disturbances in N-methyl-D: -aspartate receptor (NMDA-R) functioning are associated with the pathogenesis of schizophrenia. To assess actual changes in the expression of the GluN1 subunit and its isoforms, we measured absolute differences in the levels of mRNA/protein for panGluN1 (eight isoforms altogether) as well as the mRNA individual isoforms in the postmortem left/right hippocampus of patients with schizophrenia in comparison with non-psychiatric subjects. There were no significant differences in the panGluN1 subunit mRNA expression, but the absolute left/right differences were much more pronounced in the patients with schizophrenia. Protein levels of the GluN1 subunit in the left hippocampus in male schizophrenic patients were lower than controls. The expression of the NR1-4b isoform was attenuated in the left, whereas the NR1-2b was reduced in the right hippocampus of schizophrenic patients. Isoforms associated with the efficiency of NMDA-induced gene expression and with phosphorylation occurred more commonly in schizophrenic hippocampi. In summary, our study suggests that NMDA-R hypofunction in schizophrenia might be selectively dependent on the dysregulation of GluN1 subunit expression, which exhibits a somewhat different expression in the left/right hippocampus of psychotic patients. | 20204507
|
Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Monyer, H, et al. Science, 256: 1217-21 (1992)
1992
Show Abstract
The N-methyl D-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine. Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% identical in sequence. These are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor subunits, including the NMDA receptor subunit NMDAR1 (NR1). Upon expression in cultured cells, the new subunits yielded prominent, typical glutamate- and NMDA-activated currents only when they were in heteromeric configurations with NR1. NR1-NR2A and NR1-NR2C channels differed in gating behavior and magnesium sensitivity. Such heteromeric NMDA receptor subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the mature rat brain, while NR2 messenger RNA show a differential distribution. | 1350383
|