Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking. Ong, EW; Xue, L; Olmstead, MC; Cahill, CM British journal of pharmacology
172
615-29
2015
Show Abstract
The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors.Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments.A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N.The results support the hypothesis that prolonged morphine treatment induces the formation of MOP-DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents.This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. | | | 24819092
|
Activation of developmental nuclear fibroblast growth factor receptor 1 signaling and neurogenesis in adult brain by α7 nicotinic receptor agonist. Narla, ST; Klejbor, I; Birkaya, B; Lee, YW; Morys, J; Stachowiak, EK; Prokop, D; Bencherif, M; Stachowiak, MK Stem cells translational medicine
2
776-88
2013
Show Abstract
Reactivation of endogenous neurogenesis in the adult brain or spinal cord holds the key for treatment of central nervous system injuries and neurodegenerative disorders, which are major health care issues for the world's aging population. We have previously shown that activation of developmental integrative nuclear fibroblast growth factor receptor 1 (FGFR1) signaling (INFS), via gene transfection, reactivates neurogenesis in the adult brain by promoting neuronal differentiation of brain neural stem/progenitor cells (NS/PCs). In the present study, we report that targeting the α7 nicotinic acetylcholine receptors (α7nAChRs) with a specific TC-7020 agonist led to a robust accumulation of endogenous FGFR1 in the cell nucleus. Nuclear FGFR1 accumulation was accompanied by an inhibition of proliferation of NS/PCs in the subventricular zone (SVZ) and by the generation of new neurons. Neuronal differentiation was observed in different regions of the adult mouse brain, including (a) βIII-Tubulin-expressing cortical neurons, (b) calretinin-expressing hippocampal neurons, and (c) cells in substantia nigra expressing the predopaminergic Nurr1+ phenotype. Furthermore, we showed that in vitro stimulation of neural stem/progenitor cells with α7nAChR agonist directly activated INFS and neuronal-like differentiation. TC-7020 stimulation of the βIII-Tubulin gene was accompanied by increased binding of FGFR1, CREB binding protein, and RNA polymerase II to a Nur77 targeted promoter region. TC-7020 augmented Nur77-dependent activation of nerve growth factor inducible-B protein responsive element, indicating that α7nAChR upregulation of βIII-Tubulin involves neurogenic FGFR1-Nur signaling. The reactivation of INFS and neurogenesis in adult brain by the α7nAChR agonist may offer a new strategy to treat brain injuries, neurodegenerative diseases, and neurodevelopmental diseases. | Immunofluorescence | Mouse | 24014683
|
Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. Ziebell, JM; Taylor, SE; Cao, T; Harrison, JL; Lifshitz, J Journal of neuroinflammation
9
247
2012
Show Abstract
Since their discovery, the morphology of microglia has been interpreted to mirror their function, with ramified microglia constantly surveying the micro-environment and rapidly activating when changes occur. In 1899, Franz Nissl discovered what we now recognize as a distinct microglial activation state, microglial rod cells (Stäbchenzellen), which he observed adjacent to neurons. These rod-shaped microglia are typically found in human autopsy cases of paralysis of the insane, a disease of the pre-penicillin era, and best known today from HIV-1-infected brains. Microglial rod cells have been implicated in cortical 'synaptic stripping' but their exact role has remained unclear. This is due at least in part to a scarcity of experimental models. Now we have noted these rod microglia after experimental diffuse brain injury in brain regions that have an associated sensory sensitivity. Here, we describe the time course, location, and surrounding architecture associated with rod microglia following experimental diffuse traumatic brain injury (TBI).Rats were subjected to a moderate midline fluid percussion injury (mFPI), which resulted in transient suppression of their righting reflex (6 to 10 min). Multiple immunohistochemistry protocols targeting microglia with Iba1 and other known microglia markers were undertaken to identify the morphological activation of microglia. Additionally, labeling with Iba1 and cell markers for neurons and astrocytes identified the architecture that surrounds these rod cells.We identified an abundance of Iba1-positive microglia with rod morphology in the primary sensory barrel fields (S1BF). Although present for at least 4 weeks post mFPI, they developed over the first week, peaking at 7 days post-injury. In the absence of contusion, Iba1-positive microglia appear to elongate with their processes extending from the apical and basal ends. These cells then abut one another and lay adjacent to cytoarchitecture of dendrites and axons, with no alignment with astrocytes and oligodendrocytes. Iba1-positive rod microglial cells differentially express other known markers for reactive microglia including OX-6 and CD68.Diffuse traumatic brain injury induces a distinct rod microglia morphology, unique phenotype, and novel association between cells; these observations entice further investigation for impact on neurological outcome. | | | 23111107
|
The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. Gezen-Ak, D; Dursun, E; Yilmazer, S PloS one
6
e17553
2011
Show Abstract
Recent studies have suggested that vitamin D can act on cells in the nervous system. Associations between polymorphisms in the vitamin D receptor (VDR), age-dependent cognitive decline, and insufficient serum 25 hydroxyvitamin D(3) levels in Alzheimer's patients and elderly people with cognitive decline have been reported. We have previously shown that amyloid β (Aβ) treatment eliminates VDR protein in cortical neurons. These results suggest a potential role for vitamin D and vitamin D-mediated mechanisms in Alzheimer's disease (AD) and neurodegeneration. Vitamin D has been shown to down-regulate the L-type voltage-sensitive calcium channels, LVSCC-A1C and LVSCC-A1D, and up-regulate nerve growth factor (NGF). However, expression of these proteins when VDR is repressed is unknown. The aim of this study is to investigate LVSCC-A1C, LVSCC-A1D expression levels and NGF release in VDR-silenced primary cortical neurons prepared from Sprague-Dawley rat embryos.qRT-PCR and western blots were performed to determine VDR, LVSCC-A1C and -A1D expression levels. NGF and cytotoxicity levels were determined by ELISA. Apoptosis was determined by TUNEL. Our findings illustrate that LVSCC-A1C mRNA and protein levels increased rapidly in cortical neurons when VDR is down-regulated, whereas, LVSCC-A1D mRNA and protein levels did not change and NGF release decreased in response to VDR down-regulation. Although vitamin D regulates LVSCC-A1C through VDR, it may not regulate LVSCC-A1D through VDR.Our results indicate that suppression of VDR disrupts LVSCC-A1C and NGF production. In addition, when VDR is suppressed, neurons could be vulnerable to aging and neurodegeneration, and when combined with Aβ toxicity, it is possible to explain some of the events that occur during neurodegeneration. | | | 21408608
|
Short-term fasting induces profound neuronal autophagy. Alirezaei, M; Kemball, CC; Flynn, CT; Wood, MR; Whitton, JL; Kiosses, WB Autophagy
6
702-10
2010
Show Abstract
Disruption of autophagy--a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes--can cause neurodegeneration in tissue culture and in vivo. Upregulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which upregulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic upregulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially therapeutic neuronal response. Full Text Article | | | 20534972
|